NC Load Frequency Control & Reserve:

Overview last Developments

Table of Contents

- **1. Frequency Quality**
- 2. Load-Frequency Control Structure
- 3. Frequency Containment Reserves
- 4. Frequency Restoration Reserves
- 5. Cross-Border Exchange and Sharing of Reserves
- 6. Co-operation with DSO
- 7. Synchronous Time Control

Frequency Quality Target Parameters

For each synchronous area

	Baltic	Continental	Great Britain	Ireland	Nordic	Cyprus	Iceland
		Europe					
Nominal frequency	50 Hz	50 Hz	50 Hz	50 Hz	50 Hz	50 Hz	50 Hz
Standard frequency range	±50 mH	±50 mHz	±200 mHz	±200 mHz	±100 mHz	±100 mHz	
Maximum instananeous frequency deviation	±400 mHz	±800 mHz	±800 mHz	±1000 mHz	±00 mHz	±500 mHz	
						1.2 Hz	
						from 50 Hz	
Maximum steady-state frequency deviation	±200 mHz (+-400	±200 mHz	±500 mHz	± 500 mHz	±500 mHz	±500 mHz	
	mHz but no longer						
	then 72 min. per						
	24 h)						
Time to restore frequency	20 min	15 min	49.5Hz within 60	49.5Hz within 1	15 min	30 s 49.5	
			seconds	min		5 min 49.8	

- Target number of minutes outside the Standard Frequency Range
- Numbers do not apply to very small Island Systems (e.g. Sardinia)

For each Control Block

- Standard Frequency Restoration Error Range
- Target number of time intervals outside the Standard Frequency Restoration Error Range (resolution Time to Restore Frequency)

entsoe

Synchronous Area: Frequency Parameters

Example Frequency Distributions 1/2

entsoe

Example Frequency Distributions 2/2

entsoe

Table of Contents

- 1. Frequency Quality
- 2. Load-Frequency Control Structure
- 3. Frequency Containment Reserves
- 4. Frequency Restoration Reserves
- 5. Cross-Border Exchange and Sharing of Reserves
- 6. Co-operation with DSO
- 7. Synchronous Time Control

Cross-Border Processes between Control Areas

- Cross-Border Processes:
 - Imbalance Netting*
 - Cross-Border FRR and RR Activation
- Defined for Control Areas
- Power exchange shall not exceed physically available transmission capacity (online monitoring)
- Procedures for information and approval by affected TSOs yet to be defined.

Imbalance Netting
Control Area 1
Imbalance: -200
Export: +50
Act. FRR: -150
Control Area 2
Imbalance: +100
Export: -50
Act. FRR: +50

*Imbalance Netting is implicitly performed where there is only one Frequency Restoration Process in the Synchronous Area

- 1. Frequency Quality
- 2. Load-Frequency Control Structure
- 3. Frequency Containment Reserves
- 4. Frequency Restoration Reserves
- 5. Cross-Border Exchange and Sharing of Reserves
- 6. Co-operation with DSO
- 7. Synchronous Time Control

Main Aspects

- Determination of FCR volume (total/shares)
 - Common approach for dimensioning of total FCR per Synchronous Area based on risk assessment considering behaviour of load and generation and Market Induced Imbalances (covering of probable imbalances; minimum FCR = Reference Incident)
 - Determination of individual shares for TSOs on basis of shares of net generation/consumption
- Determination of required Properties
 - Exact requirements for FCR properties that are considered to be stable (minimum accuracy of frequency measurement, minimum insensitivity of the controllers, FCR full activation time, FCR full activation deviation)
 - Joint definition of additional properties per synchronous area (example: FCR activation delay)
- Reserve Providing Units
 - FCR Providing Unit may consist of more than one generating/demand facility
 → respective requirements by the Connecting TSO; example: Batteries
 - Definition of maximum concentration of FCR in a FCR Providing Unit and per electrical node

Main Aspects

- Characteristic of activation (Power to frequency):
 - linear or piecewise linear
- Availability
 - Continous availability required from FCR Provider; exception: unplanned outages; in that case:
 → information to the TSO
 - \rightarrow replacement asap, but not later than 12 hours after the outage
 - Continous Activation as long as Frequency Deviation persists
- Monitoring
 - Requirement for the TSO; → respective requirement per FCR Providing Unit to make available to the TSO: Status (control on/off), instantaneous active power with/without FCR activation; on request of TSO to be delivered as on line data
- Inertia
 - Requirement for collaboration on monitoring and analysis as well as for developing counter measures if required

entso

Table of Contents

- 1. Frequency Quality
- 2. Load-Frequency Control Structure
- 3. Frequency Containment Reserves
- 4. Frequency Restoration Reserves
- 5. Cross-Border Exchange and Sharing of Reserves
- 6. Co-operation with DSO
- 7. Synchronous Time Control

entsoe

On Synchronous Area Level

- Definition of a Frequency Restoration (FR) Quality Target per Control Block
- Obligation for and Commitment of Control Block to fulfill individual Quality Target

Dimensioning on Control Block Level

- Keynote: Reserves need to be sufficient to fulfill FR Quality Target
- Dimensioning based on historical data
- FRR Capacity larger than Dimensioning Incident
- According to Imbalance Properties
 - Automatic Full Activation Time
 - Manual Full Activation Time
- In case of insufficient Reserves -> Escalation Procedures
- Sharing (individual reduction) allowed predominantly for small Control Blocks

Reserve Connecting TSO

- Pregualification Process
- Monitoring Process
- Availability Requirements for Providers

entsoe

Frequency Restoration Reserves Requirements

On Synchronous Area Level

- One Reserve Connecting TSO per Providing Unit
- For Automatic FRR:
 - Delay Time (first reaction): 30 sec
- Ramp Rate
- Full Activation Time <= Time to Restore Frequency (RG CE: 15 minutes)

On Control Block Level

- Obligation to respect individual:
 - Automatic Full Activation Time
 - Manual Full Activation Time

Reserve Connecting TSO

- Prequalification Process
- Monitoring Process
- Availability Requirements for Providers
- A Providing Unit may consist of several generating of demand facilities, but additional requirements (e.g. individual data supply, ...) may be set

Exchange of reserves (FCR; FRR; RR)

Exchange of reserves impacts distribution but not the amount of reserves

- Exclusive access to reserves in another 'Area'
- Limits required to ensure even distribution of reserves for Operational Security
- Limits for exchange apply between 'Areas' defined by each Synchronous Area
 - E.g. RG CE: each Control Block can perform up to 30% of its initial FCR, with a minimum of 100 MW, of FCR for other Control Blocks
 - E.g. RG CE: each Control Block must keep X% of its FRR internally in the CB
- Transmission capacity must be available for the exchange of reserves

Sharing of reserves (FRR / RR)

Sharing of reserves impacts the amount of reserves (and their distribution)

- Non-exclusive access to reserves in another 'Area'
- Sharing predominantly for small Control Blocks with large 'Dimensioning incident'
 - FRR reduction if: 'FRR for Dimensioning incident' > 'FRR for other purposes'
- Limits for sharing apply between <u>'Areas'</u> defined by each Synchronous Area
- Basic volume of FRR: FRR that an 'Area' cannot share with other 'Areas'
- Maximum FRR reduction: limit for FRR reduction by an 'Area' due to sharing with other 'Areas'
- Transmission capacity must be available for sharing

- 1. Frequency Quality
- 2. Load-Frequency Control Structure
- 3. Frequency Containment Reserves
- 4. Frequency Restoration Reserves
- 5. Cross-Border Exchange and Sharing of Reserves
- 6. Co-operation with DSO
- 7. Synchronous Time Control

Reserve Providing Units connected to DSO Grid

Prequalification Phase

- Obligation to Reserve Providers to inform "connecting" DSO about:
 each Power Generating Module and/or Demand Unit;
 - provided reserve type (FCR, FRR, RR);
 - maximum Reserve Capacity provided by each Power Generation Module and/or Demand Unit; and

• maximum change of rate of active power for each Power Generation Module and/or Demand Unit

 Right of the DSO to object or set limits to the delivery of Reserves based on security analysis

Operation Phase

 Right of the DSO the request the same level of information as in the prequalification phase if needed for the secure grid operation

- 1. Frequency Quality
- 2. Load-Frequency Control Structure
- 3. Frequency Containment Reserves
- 4. Frequency Restoration Reserves
- 5. Cross-Border Exchange and Sharing of Reserves
- 6. Co-operation with DSO
- 7. Synchronous Time Control

entsoe

Synchronous Time Control

Current State of the NC LFC&R

 The possibility to implement a Synchronous Time Control is currently foreseen in the NC on the basis of a decision of the TSO's of a Synchronous Area

Next Steps

- The Synchronous Time Control is a service from the TSO's to the customers
- During the Public Consultation it will be elaborated if such service is valuable for the customers

Thanks for your Attention!

