

The UCTE System Adequacy Forecast 2005-2015

By J. VERSEILLE Convener of Sub-group System Adequacy

UCTE, 15 Boulevard Saint-Michel, 1040 Brussels, Belgium, info@ucte.org

System Adequacy Forecast 2005-2015

- →Introduction
- →Methodology
- →Main results
- → Detailed analysis: geographical blocks
- →Transmission system adequacy
- →Conclusions

II (

Introduction

Introduction

The UCTE System Adequacy Forecast aims at:

- ⇒ providing all European electricity market players with an overall view on system load evolution, as well as on the resources available to satisfy the system load, as an early input to investment decisions
- ⇒ providing all European electricity market players with an overview on the main changes expected in the UCTE transmission grids
- ⇒ providing TSOs which co-operate within UCTE with a prospective view of supply reliability developments throughout the network

What is adequacy ?

Adequacy measures the capability of the power system to supply the load in all the steady states in which the power system may exist, considering standard conditions.

How to assess adequacy ?

- Generation adequacy : verify the capability of the available generation capacity to cover the peak load, taking into account uncertainties on generation (resulting from planned and unplanned outages...) and on load levels (resulting from weather conditions....)
- System adequacy : includes the flexibilities provided by the interconnected network (possibilities of import / export)

```
Speaker : J VERSEILLE
```

The UCTE System Adequacy Forecast 2005-2015

Methodology: role of system adequacy forecasts in the liberalised market

- ⇒ Most supply interruptions stem from the distribution network
- ⇒ But transmission disturbances or large-area power deficits can lead to interruptions with very high economic damages
- Therefore forecasts are useful : these need to be international because reliability in the different countries is linked via transmission lines and trading
- The UCTE system adequacy publications are the framework for assembling reliability data for the generation and transmission system for a large part of Europe
- ⇒ Since 2000, UCTE has made continuous efforts to adapt the system adequacy forecast to the new market environment and expectations

⇒ the present report marks a new step of these improvements

Page 6

Page 5

Main hypotheses (1) ⇒ Extension of the forecast up to 2015 to provide earlier signals to the market ⇒ Introduction of two scenarios in order to cover the higher uncertainties on future generation capacity at such time horizon Scenario (A) "Conservative" : only new projects considered as "firm", estimated on the basis of data available to TSOs, are taken into account, as long as known decommissioning projects highlights potential unbalances without any new further investment decisions Scenario (B) "Best Estimate" : results from TSO's estimations of generation developments taking into account : national generation development plans, application of European Directives (renewables), applications for grid connection.... this scenario provides an estimation of potential future developments provided that market signals provide adequate incentives for investmen The UCTE System Adequacy Forecast 2005-2015 Speaker : J VERSEILLE Page 7 UCIE

Main hypothesis (2)

Load

introduction of a new reference point to assess UCTE synchronous load :

- 3rd Wednesdays of January and July, at 11:00 (reference points)
- 3rd Wednesdays of January, at 19:00 (closer to synchronous peak load)
- under normal climatic conditions

Other assumptions

- Long term export/import contracts or participation in power plants out of the national territory not taken into account
- ⇒ Interconnections capabilities based on ETSO definitions and calculations

Page 8

Margin: possibility of export or need of import

Methodology

Current indicative adequacy reference level :

Remaining Capacity at monthly peak load > 5% x Generation Capacity

Good overall index, allowing a reasonably low risk of shortfall for UCTE countries but :

- <u>does not take into account the differences between systems</u>: size of largest plants / size of the system, sensitivity to hydro or wind conditions, sensitivity of the load
 ⇒ corresponds to a different probability of short fall for each country
- ⇒ Refined Assessment for Generation Adequacy
- based on evaluation of expectation, standard deviation and correlation for random variables
- consistent with country's generation structure

Proposed assessment for Generation Adequacy :

- Choice of a level of acceptable short fall risk (e.g. 1% risk = 2 to 5 days per year on average for UCTE)
- Defining the needed Remaining Capacity associated to the given level of risk

Main results - Remaining Capacity January

Main results

⇒ security of supply of the UCTE system as a whole seems not to be at risk in 2005 - 2007

Scenario A

- ⇒ slight decrease of the security margin can be observed in 2007 and 2010
- ⇒ around 30 GW firm investments in generation would be necessary in 2015 to counterbalance the potential deficit

Scenario B

⇒ foreseen plans or projects should maintain adequate security of supply.... provided that proper investment incentives exist.

Main results - Remaining Capacity July

Main results - 2005 to 2007

- ⇒ Installed capacity
- increase of 20 GW over the period from January 2005 and January 2007,
- 11 GW from renewable energy sources (mainly wind)
- ⇒ Reliably available Generation
- only +11 GW from January 2005 to January 2007
- ⇒ Load
- annual average rate of increase of 2.0 % in winter (+2.2% in summer),
 - + 15 GW over the period 2005-2007
- ⇒ Remaining Capacity
- decreases from 2005 to 2007 (-4 GW in winter, -2 GW in summer) In 2007, the overall Remaining Capacity for UCTE represents 10.5% in winter (9.2% at peak), 9.0% in Summer, of the total generating capacity Adequacy Reference Margin index met

Page 18

UCI

Main results - SCENARIO A - 2010 and 2015

⇒ Installed capacity

• from 2007 to 2010

increase of **25 GW** over the period / **+18 GW** for renewable energy sources (from 34 GW in 2005 to 49 GW in 2007)

• from 2010 to 2015

+19 GW (+24 GW from renewable and decrease of nuclear and fossil fuel)

⇒ Reliably available Generation

+13 GW 2007-2010 but only +1 GW 2010-2015

Load : annual average rate of increase of 1.7% until 2010, and 1.6% (1.8% in summer) on to 2015

Remaining capacity decreases from 2007 to 2010 (by 7 GW in winter, and 6 GW in summer) it drops drastically to 25 GW (January) and 14 GW (July) in 2015

Speaker : J VERSEILLE

The UCTE System Adequacy Forecast 2005-2015

Main results - Scenario B "Best Estimate"

✓In Scenario B additional commissioning brings out

- \checkmark an extra capacity of 11 GW $\,$ in 2010, and 38 GW in 2015 $\,$
- ✓ mostly from fossil fuel energy sources
- ✓ out of which 90% can be considered as reliably available capacity

Effect on Remaining Capacity : + 11 GW in 2010, +33 GW in 2015

When Scenario B is taken into account, RC is improving until 2010, and accounts for <u>58 GW in January 2015, and 52 GW in July</u>

Page 19

UCT

Main results - 2010 and 2015

In 2010, the overall Remaining Capacity for UCTE represents 9% of the total generating capacity in January, and 7.7% in July. In 2015 only 3.9% (winter) and 2.2% (summer)

Adequacy Reference Margin met in 2010, BUT NO MORE IN 2015

When assumptions from TSOs concerning commissioning are taken into account,

Remaining Capacity still represents 10.6% in winter (9.4% in summer) of Generating Capacity in 2010, and 8.4% in winter 2015 (7.4% in summer 2015). <u>Under these hypothesis, Remaining Capacity matches the ARM from 2010 to</u> 2015

```
Speaker : J VERSEILLE
```

The UCTE System Adequacy Forecast 2005-2015

Page 21

Page 22

U C I I

UCT

Main results - 2005 to 2007

								· · · · · · · · · · · · · · · · · · ·		
UCTE-Power Bala	nce, 2	005 – 20	15 FOR	ECASTS			Results	s in GW		
3 rd Wednesday		2005			2006			2007		
	Jar	nuary	July	Jan	uary	July	Jan	uary	July	
	11:00	19:00	11:00	11:00	19:00	11:00	11:00	19:00	11:00	
Installed National generating capacity:										
Hydro power stations	133.0	133.0	133.0	133.1	133.1	133.1	133.6	133.6	133.8	
Nuclear power stations	113.0	113.0	112.7	112.7	112.7	112.6	112.1	112.1	110.7	
Fossil fuel power stations	305.8	305.8	307.3	310.2	310.2	312.5 0.4	315.4 0.5	315.4 0.5	318.2 1.7	In red : difference
Renewable energy sources	34.4	34.4	36.4	40.2 <u>0.1</u>	40.2 <u>0.1</u>	42.4 0.1	45.6 0.7	45.6 <u>0.7</u>	48.4 <u>0.7</u>	scenario B - scenario A
Not clearly identifiable energy sources	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.6	1.7	
Notional conception acrossity	587.7	587.8	591.3	597.9	597.9	602.3	608.4	608.4	612.8	
National generating capacity				0.1	0.1	0.5	1.2	1.2	2.4	
Non-usable capacity	90.0	90.0	109.8	93.6	93.6	113.2	97.4	97.4	0.1	
Of which, mothballed capacity	12.0	12.0	12.8	12.1	12.1	12.1	11.7	11.6	11.6	
Maintenance and overhauls (fossil fuel power stations)	9.9	9.9	50.2	10.2	10.2	50.7	10.5	10.5	50.9 <u>0.1</u>	
. ,	17.6	17.6	16.6	18.4	18.4	17.1	18.3	18.3	17.0	
Outages (fossil fuel power stations)							0.1	0.1	0.2	
system services reserve	31.2	31.0	30.4	31.5	31.5	30.7	31.9	31.9	31.0	
Reliably available capacity	439.1	439.2	384.Z	444.2 0.1	444.2 0.1	390.7 0.5	450.3 <u>1.2</u>	450.3 1.1	390.2 2.1	
Load	371.5	379.7	326.5	378.4	386.6	333.8	386.5	394.0	340.9	
margin against the daily peak load	17.2	8.5	10.5	17.2	9.0	10.8	17.4	8.7	10.9	
	67.6	59.6	57.7	65.8	57.6	56.8	63.9	56.2	55.3	
Remaining capacity				0.1	0.1	0.5	1.2	1.1	2.1	

Speaker : J VERSEILLE

Main results - 2010 and 2015

	UCTE-Power Balance,	2005 - 2015	FORECA	STS	Resu	ilts in GW	1		
	3 rd Wednesday		2010			2015			
		Jan	uary	July	Jan	uary	July		
		11:00	19:00	11:00	11:00	19:00	11:00		
	Installed National generating capacity:								
		135.1	135.1	135.4	136.4	136.4	136.4		
	Hydro power stations	0.3	0.3	0.3	1.8	1.8	2.0		
		110.0	110.0	110.0	105.5	105.5	105.5		
	Nuclear power stations	222.2	272.2	227.2	0.8 201 0	0.8 221 0	0.8 201 0		
	Fossil fuel power stations	3∠3.3 <u>80</u>	323.3 <u>80</u>	327.3	321.0 27.2	321.0 27.2	321.0		
		63.2	63.2	67.1	87.1	87.1	89.9		
	Renewable energy sources	2.6	2.6	2.7	8.1	8.1	9.4		
	Not clearly identifiable energy sources	1.8	1.8	1.8	1.8	1.8	1.8		
		633.4	633.4	641.6	652.5	652.5	655.3		
	National generating capacity	10.9	10.9	11.6	38.0	38.0	42.7		
		136.6	136.6	198.6	152.9	152.9	215.2		
	Non-usable capacity	0.1	0.1	0.4	4.5	4.5	5.0		
	system services reserve	33.0	32.8	32.3	34.5	34.5	34.0		
	system services reserve	463.8	463.9	410 7	465.0	465.0	406 1		
	Reliably available capacity	10.9	10.7	11.5	33.0	33.1	37.4		
	Load	406.5	414.9	361.1	439.8	447.8	391.9		
In red : difference	margin against the daily peak load	18.4	10.2	11.9	19.2	11.2	12.7		
sconario R - sconario A		57.3	49.0	49.5	25.2	17.2	14.2	4	
SUCHAND - SUCHAND A	Remaining capacity	10.9	10.7	11.5	33.0	33.1	37.4		
	The UCTE S	vstem Ade	auacy	Forecas	st 2005-	2015		Page 23	
Opeaker : 0 VEROLILLE			quiero y	oroout				UCTE	

Detailed analysis by country

Remaining Capacity is compared to the Adequacy Reference Margin

Based on forecasts for 2005

⇒<u>Countries who need RC>5% NGC :</u>

Criteria not respected for Germany, Hungary, and Belgium

⇒<u>Countries who need RC>10% NGC :</u>

Criteria not respected for Spain, Greece, Slovenia, Macedonia, Serbia and Montenegro, Portugal and Romania

(see next slide)

Remaining capacity / ARM - 2005

* on January 1st 2002

Remaining capacity / ARM - 2010

* on January 1st 2002

Page 28

UCI

Detailed analysis: geographical blocks

Main UCTE block

Detailed analysis: geographical blocks

Detailed analysis: geographical blocks

• Italy

Given the expected development of generation, Remaining Capacity is stable from 2005 to 2007, and improving in 2010.

Under these conditions, the index is met over the period 2005-2010.

Extra commissioning will be necessary to provide a sufficient level of security in 2015

Detailed analysis: geographical blocks Centrel \Rightarrow without extraordinary changes in both the generating capacity and the load, the Centrel block reaches the reference margin even considering the minimal scenario, with a remaining capacity of 19 % of the generating capacity in 2005, and still 12.5% in 2015 this block should remain a structural exporter but uncertainties on the effects of the future environmental legislation The UCTE System Adequacy Forecast 2005-2015 Page 35 Speaker : J VERSEILLE **Detailed analysis: geographical blocks** South Eastern UCTE (Greece, SCG, FYROM) 5.0 JULY, 11:00 GW 30 2.1 1.011 0.9 0.0 2006 2011 2012 2013 2014 2015 2007 2008 2009 2010 -5.0 RC. Scen. A 🛶 ARM 🛶 RC. Scen. B

Page 36

Detailed analysis: geographical blocks

Geographical blocks January 2007 11:00

Geographical blocks January 2010 11:00

Developments on interconnection over the period 2005-2007

Line or equipment	Voltage level	Date	Cross- border
BALBOA – ALQUEVA line	400 kV	2004 - 2005	E-P
Avelgem – Avelin – Mastaing (second circuit)	400 kV	2005	B-F
Double AC tie-line Robbia - San Fiorano	400 kV	2005	CH -I
Stip-Cervena Mogila	400kV	2005	FYROM – BG
ESTRECHO-FARDIOUA (2nd CIRCUIT)	400 kV	2005	E - Morocco
Chooz – Jamiolle – Monceau	225/150 kV	2006	B Fr
PST Zandvliet + Kinrooi	400 kV	2006	B-NL
2nd line Slavotice - Durnrohr	400 kV	2006	CZ - A
Bitola-Lerin	400kV	2006	FYROM – GR
Vrutok-Bureli	220kV	2006	FYROM - AL
Line Meliti –Bitola 400 kV	400 kV	2006	FYROM - GR
Line Philippi – Turkey	400 kV	2006	GR -Turkey
OHL Nadab –Bekescsaba	400 kV	2007	RO -H
Single line Podgorica – Tirana	400 kV	2007	SCG - AL

Speaker : J VERSEILLE

The UCTE System Adequacy Forecast 2005-2015

Page 41

Transmission system adequacy

Developments on interconnection over the period 2007-2010

Line or equipment	Voltage level	Date	Cross- border
Single line Nis – Skopje	400 kV	2007	SCG - FYROM
Single line Mitrovica - Ugljevic	400 kV	2007	SCG - BA
France - Spain : eastern reinforcement	400 kV	2007	F -E
Nadab - Bekescsaba	400 kV	2007	H-HR
Line Ernestinovo - Pecs	400 kV	2007 - 2008	H-RO
Upgrade of line Audorf - Kasso -		2008	D - DK
Lienz – Cordigniano Line	400 kV	2008	A -I
OHL Suceava - Balti	400 kV	2009	RO - MD
Cirkovce – Pince Line	400 kV	2010	SLO - H
Single line	400 kV	2010	SCG - H
Line Valdigem – Douro Intal - Aldeadavilla	400 kV	2010	E - P
2x400 kV Okroglo - Udine	400 kV	2011	SLO - I
Bitola - Zemjak	400kV	2015	FYROM - AL
Upgrade of 400 kV line Isar – St Peter		>2010	D - A
PST Hagenwerder - Mikulowa		>2010	D - PL

The UCTE System Adequacy Forecast 2005-2015

Transmission system adequacy

As far as regional blocks are concerned, noticeable increase of exchange capacities are expected according to developments on interconnections :

- between main UCTE and Spain+Portugal (+1200 MW in 2007)
- between main UCTE and Italy (+800 MW in 2008, +1600 MW in 2010)
- between Spain + Portugal and Morocco (+ 400 MW in 2007)
- between JIEL +Greece and Turkey (+500 MW in 2010)
- between Centrel and main UCTE (in 2007-2008)
- between Centrel and Romania & Bulgaria (in 2007)
- between Romania & Bulgaria and IPS/UPS (+1100 MW in 2009)

Speaker : J VERSEILLE

The UCTE System Adequacy Forecast 2005-2015

Page 43

Contribution of the interconnection

Contribution of the interconnection

* on January 1st 2002

Contribution of the interconnection

Transfer capacities does not seem to be an obstacle to system security Nevertheless, some particular situations are noticeable :

- the relatively low exchange capacities of Spain and Portugal in 2005 ; the situation improves in 2010 when exchange capacities are of the same order of magnitude as the remaining capacity

- remaining capacity in France higher than the exportable capacity in 2005; this value is however subject to large variations but the potential for exports can be limited at some periods. The exportable capacity seems to be more adequate in 2010 after the reinforcement towards Belgium and Spain are commissioned.

exportable capacity seems to be lower than the export capabilities in Poland.
In 2005 the ratio between the remaining capacity and the transmission capacity is balanced in Germany. On interconnections with the Netherlands, there currently exists congestion with regard to exports, and with regard to imports from North to East.

Conclusion : comparison with last year results

Conclusion : comparison with last year forecast

Comparison with previous year's forecast (SAF 2004-2010 for 2005, 2006 and 2010)

- ⇒Generating capacity : Higher by approx. 8 GW in 2005*, 2006, and 2010
- * partly owing to changes in statistical classification of generation
- ⇒Load : updates lead to an increase of approx. 5 GW in the short term, but trend is confirmed in 2010 (+2 GW only)
- ⇒Remaining capacity : consequently higher by approx. 5 GW in winter (comparable in summer) in 2005 and 2006, and 4 GW in winter 2010, as compared to last year's forecasts

Mismatch between RC and ARM, expected in 2009-2010 in SAF 2003, is postponed to the period 2010-2011 in this year's forecasts

System Adequacy Forecast 2005-2015

Capacity data (Net values in GW – 3rd Wed at 11:00)

- 1. Hydro power stations
- 2. Nuclear power stations
- 3. Fossil fuel power stations
- 4. Renewable energy sources (without hydro)
- 5. Not clearly identifiable energy sources
- 6. National Generating capacity (=1+2+3+4+5)
- 7. Non-usable capacity
- 8. Maintenance (thermal power stations)
- 9. Outages (thermal power stations)
- 10. System services reserve
- 11. Reliably available capacity (=6-(7+8+9+10))
- 12. Load
- 13. Margin against the daily peak load
- 14. Remaining capacity (=11-12)

```
Speaker : J VERSEILLE
```

The UCTE System Adequacy Forecast 2005-2015

Structure of the SAF Report 2005-2015

✓ Methodology

✓ Generation Adequacy - Main results

- ✓ Period 2005-2007
- ✓ 2010 / 2015
- ✓ Regional Analysis of the Remaining Capacity
- ✓ Comparison with previous forecasts

✓Transmission System Adequacy

- ✓ Main developments on international interconnections
- ✓ Remaining Capacity / Transfer Capacity
- ✓ Maps with Power Balance Elements for Regional Blocks

✓ Detailed analysis of the Power Balance Elements

Page 51