
BALTIC REGIONAL GROUP ANNUAL REPORT

CONTENT

FOREWORD	3
Baltic Regional Group Activities	4
Operation and Control of the Baltic TSO's	5
Exchanges of Electricity in 2009, GWh	6
Security of Supply in the Baltic Interconnected Transmission Grid	7
Cooperation within BRELL	9
THE MAIN EVENTS	10
Estonia	10
Latvia	12
Lithuania	14
STATISTICS	17
Key Operational Indicators of Baltic TSO's in 2009	17
Length of Overhead and Cable Power Transmission Lines in the Baltic Interconnected States	18
Installed Capacity of Different Types of Plants in the Baltic Interconnected States	18
Installed Capacity of Power Plants, MW	19
Subsidized Energy Installed Capacity in the Baltic Interconnected States, MW	20
Subsidized Energy Production in the Baltic Interconnected States, GWh	20
Net Consumption and Production by Month in Estonia, GWh	21
Net Consumption and Production by Month in Latvia, GWh	22
Net Consumption and Production by Month in Lithuania, GWh	23
Peak Load in the Baltic Interconnected States	24
Minimum Load in the Baltic Interconnected States	24
Peak Load and Average Temperatures in the Baltic Interconnected States by Month	24
Estonian Net Consumption and Production on Day of Peak Load (Net), MWh/h (18 December 2009)	25
Estonian Net Consumption and Production on Day of Minimum Load (Net), MWh/h (24 June 2009)	26
Latvian Net Consumption and Production on Day of Peak Load (Gross), MWh/h (5 January 2009)	27
Latvian Net Consumption and Production on Day of Minimum Load (Gross), MWh/h (26 June 2009)	28
Lithuanian Net Consumption and Production on Day of Peak Load (Net), MWh/h (5 January 2009)	29
Lithuanian Net Consumption and Production on Day of Minimum Load (Net), MWh/h (6 July 2009)	30

FOREWORD

The changes that are taking place in fZWenergy sector all over Europe give us an opportunity to take part in all encompassing significant alterations. However, it is very important to follow the main jointly set course – the establishment of the single market of the Baltic States ensuring a high level of reliability and quality of management of the power system and its integration into Western European power systems.

The most significant event that hae recently taken place in the operation of our power system is the closure of the Ignalina nuclear power plant (NPP) which has facilitated and accelerated the development of power exchange in the Baltic States.

The closure of the Ignalina NPP on the last day of the year 2009

was a substantial technological alteration for the system that had used to work in a different mode. The Ignalina NPP that had been a significant power generating source which had generated 35 per cent of all power demand in the Baltic States was disconnected from the system.

The directions of power flows have dramatically changed recently – an exporting power system of Lithuania has become an importer as a power system of Latvia used to be, where import also prevailed and electrical capacity excess was mainly during the spring flood through the operation of a hydro power plant on the river Daugava.

The liberalized power markets require special attention of electricity transmission system operators (TSOs) in order to use all possible capacities of cross-border electricity transmission lines efficiently.

No doubt that harmonious work of all TSOs is one of the most important factors to pursue common goals of the power sector. All earlier mentioned changes for us – as a TSO – are like the turning from a smooth and straight road on to a mountain road that is a lot narrower due to the closure of the Ignalina NPP and twisting, as it is built upon the needs of the power market participants to liberalize power markets. There is no time to look around; we have to drive ahead at steady "speed" of 50 Hz and continually improve skills of cooperation between TSOs.

Dear Colleagues, thank you very much for your constructive cooperation.

On 1 April, 2010 we transferred the coordination of the operation of ENTSO-E Baltic Regional Group to the Estonian TSO – Elering OÜ. Good luck!

una,

Daivis Virbickas Convener of Baltic Regional Group ENTSO-E System Operation Committee

Chief Technical Officer (CTO) of LITGRID

Baltic Regional Group Activities

Baltic Regional Group (BRG) represents Lithuanian, Latvian and Estonian Transmission System Operators (TSO's). The Convener of BRG is Daivis Virbickas (LITGRID UAB, Lithuania). Convener changes every year according to agreed rotation principal Lithuania in 2009, Estonia in 2010 and Latvia in 2011.

In August 2009 System Operation Committee approved Terms of Reference (ToR) BRG. ToR includes the following tasks:

- Monitor, analyze and report on power-system quality-level, changes, important network operation events on a regular basis;
- Organize evaluation of integration in to the Baltic Power systems pan-European operational standards;
- Ensure the implementation of common development tools, used in the Baltic TSO's operational environment;
- Ensure that Electricity Market development in Baltic region is in compliance with security and reliability standards;
- Approve solutions that improve the reliability, security and efficiency of synchronous operation of transmission systems.

The main works for BRG in 2009 were:

- An updated Regulation for isolated operation of Baltic TSO's and Kaliningrad region from IPS/UPS and Instruction for dispatchers "Isolated operation Baltic TSO's and Kaliningrad region from IPS/UPS" was approved;
- An updated Baltic TSO's operational planning procedures were approved.

Operation and Control of The Baltic TSO's

During 2009, dispatch control of the transmission grids in the Baltic States was carried out from three dispatch centres run by the following TSO's:

- Pohivork OÜ (Estonia). Elering OÜ from 19.06.2009;
- Augstsprieguma tīkls AS (Latvia);
- Lietuvos Energija AB (Lithuania). LITGRID UAB from 01.01.2010.

The transmission system operators perform:

- real time power system monitoring;
- the readiness to perform power system restoration after widespread disturbances;
- interchange security assessment of the BRELL (Belarus, Russia, Estonia, Latvia, Lithuania) transmission system network for the following day or month;
- power system cross border balance settlements;
- calculations and reporting on wheeling energy through the power systems networks;
- calculations of the common disturbance generation reserves and reports on their activities.

Exchanges of Electricity in 2009, GWh

Security of Supply in the Baltic Interconnected Transmission Grid

Ensuring safe and quality electricity supply is the primary operational goal of the interconnected transmission grid. The Baltic States operate synchronously with the power systems of Russia and Belarus. The large scale of the nuclear units (with the productive capacity of 1000 and 1300 MW) necessitates tremendous responsibility for providing a reliable and efficient transmission system.

Consequently, the operators utilize different emergency automatic devices. First, the automatic start-up of selected reserve hydro power units or automatic thermal power plants load reduction is designed to prevent the operation of the load shedding devices.

This means that the power system's security criterion N–1 (in cases of particularly severe disturbances) is provided by special emergency protection systems, which are comprised of devices in several power systems e. g. starting up the hydro generators of Daugava Cascade and Kruonis pumped storage plant (PSP) from outage signals of Ignalina nuclear power plant or 330 kV overhead lines.

The most significant bottleneck in the region is in fact outside the Baltic States, namely at the border between Russia and Belarus. In case of an emergency in this area, extremely negative consequences are possible: the instability of the system operation, a long-term shortage of electricity, failure of electrical equipment and a low level (frequency, voltage) of available power. The most significant loading of this section, crucial for operation, is the closure of the Ignalina NPP in 2010.

In order to prevent asynchronous operation in different parts of the interconnected power systems in the case of an emergency, protective devices, called ALAR (Automatic Liquidation of Asynchronous Regime), have been installed to detect asynchronous operation over selected lines and to separate network parts.

In the case of significant frequency or voltage deviation, immediate emergency disconnection of the selected load is performed by respective load-shedding automatic devices that are intended to maintain a frequency level (49.2-49.8 Hz) in the power systems.

In the Baltic power systems, the total amount of the load connected to these devices is approximately 50 % of the peak load. However, emergency disconnection of the load is performed in stages with different frequency and time settings for each stage.

In order to stabilize the frequency, a hydro generator start-up and stopping systems are used in addition to the load shedding automatic devices.

In a number of cases, the emergency automatic devices are considered to be the last chance to avoid a power system blackout, and its activation should not occur under normal operation or rated N–1 outages (except the loss of a generator or unit in Ignalina NPP).

However, with the constant load growth and predicted generation deficit in the Baltic region, the importance of emergency automatic devices should not be understated.

Operation in a synchronously interconnected network allows the generators of the Baltic power system to operate under a primary control using a dead band of 0.1–0.25 Hz and droop of 4-6 %, while centralized frequency control is performed by a central controller by the UPS of EES Russia.

Cooperation within BRELL

The organizations Belenergo (Belarus), OAO ΦCK EЭC and OAO CO EЭC (Russia), Elering AS (Estonia), Augstsprieguma tīkls AS (Latvia) and Lietuvos Energija AB (Lithuania), concluded in 2001 an Agreement on Parallel Operations of Power Systems and established BRELL. This is a body for cooperation between transmission system operators.

The BRELL organization shall maintain conditions necessary for the reliable operation and interconnection of the power systems of Belarus, Russia, Estonia, Latvia and Lithuania and deal with:

- coordination in the area of Operational Standards;
- coordination in the area of development of the BRELL transmission system's long-term planning of the 220–330–750 kV network;
- modelling of the BRELL's 220–330–750 kV network;
- O&C (incl. short-term planning of maintenance and performing switches of cross-border lines, information exchange and coordination between control centres in normal and emergency situations etc.);
- developing and maintaining conditions regarding Inter-TSO Compensation within BRELL.

THE MAIN EVENTS

Estonia

Current Situation of Transmission Grid

The transmission system operator of the Estonian power system owns network containing 110, 220 and 330 kV lines and substations and most of the 110 kV power transformers. However, according to the new Grid Code, new grid connections with Elering OÜ can be done only on the voltage of 110 or 330 kV. With neighbouring countries the Estonian power system is interconnected with five 330 kV transmission lines. With Latvia, Estonia has two 330 kV lines - one from Tartu, another from Tsirguliina substation. With Russia, Estonia has three 330 kV interconnection lines - one from Balti SS, second from Eesti PP and third from Tartu SS. From year 2006 the Estonian network is connected to Finland network via 350 MW DC submarine cable (Estlink).

4 April 2009 Elering OÜ has performed test of the separation of the Estonian Power System (EPS) from synchronously connected UPS/IPS grid. The main purposes of the test was an investigation of the capability of frequency regulation in isolated Estonian Power System during the fast and slow changing in demand with and without utilization 10

Control-room of Elering OÜ

of AFC (automatic frequency control) function of Estlink. Test was divided into the five stages:

1. Estonian Power System separation from synchronously connected UPS/IPS grid with surplus in demand.

a) Frequency regulation in isolated EPS due to a sudden change in demand decrease without utilization of AFC (automatic frequency control) function of EstLink;

b) Frequency regulation in isolated EPS with utilization of AFC functions of EstLink.

2. Frequency regulation in isolated EPS during the slow changing of generation with utilization of AFC function of EstLink.

3. Frequency regulation in isolated EPS during the fast changing of generation with utilization of AFC function of EstLink.

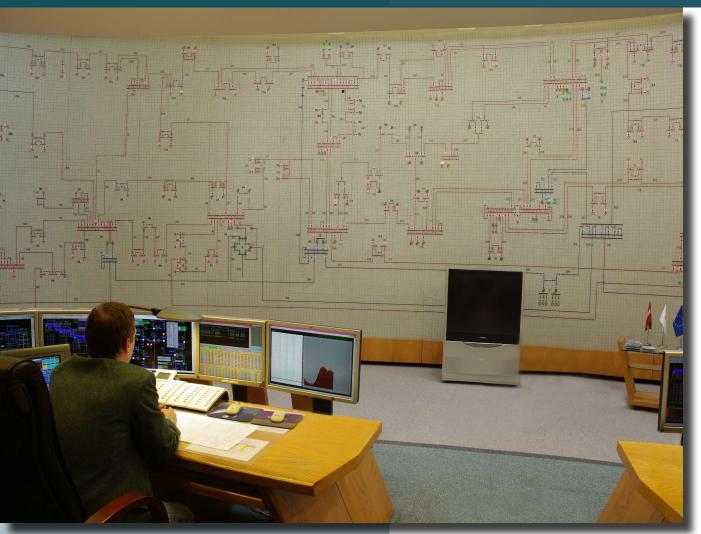
4. Frequency regulation in isolated EPS due to a sudden change in demand increase without utilization of AFC function of EstLink.

5. Reconnection of EPS with UPS/IPS.

EPS operates in island operation mode successfully 1 hour 40 min.

In 2009 the reconstruction of these substations was completed:

- Six 110 kV transformer substation (TS) with a total transformer capacity of 362 MVA;
- 110 kV Virtsu TS for a 16 MVA wind park connection;
- Expansion of the 110 kV Rõuste 110 kV TS for a 25 MVA wind park connection;
- 110 kV part of Püssi TS for a 150 MVA wind park connection.



The Major Projects of Estonian Transmission Grid

The major projects are:

- Underwater route study for Power Link to Finland (EstLink 2);
- Harku 330 kV substation expansion;
- *Kiisa 330 kV substation renovation;*
- Tartu-Sindi 330 kV overhead line construction;
- Renovation of the 330 kV line between Eesti PP and Püssi SS;
- Making data communication of substations IP-based.

Latvia

Current Situation of Transmission Grid

Existing transmission network in Latvia consists from 110 and 330 kV lines and substations. 330 kV transmission network includes 23 lines with total length of 1258 km and 15 330 kV substations. Total installed capacity of transformers is 3200 MVA. 110 kV transmission network includes power lines with total length of 4072 km and 119 substations with 110 kV transformers 4698 MVA installed capacity. Latvian transmission network have two interconnections with Estonia, one with Russia and four with Lithuania. The capacity of transmission network is sufficient to ensure safe operation of the power system in present time.

Valmiera 330 kV substation reconstruction and

Control-room of Augstsprieguma tīkls AS

modernization is finished at the end of 2009. After Ignalina NPP closure Valmiera 330 kV substation will be important transit substation in the interconnected Baltic transmission system. Valmiera 110 kV substation switchyard reconstruction will be finished at the end of 2010. New 110 kV substations constructed in 2009: "Matiss" and "Zolitude" in Riga and "Liepajas Metalurgs" in Liepaja. 110 kV "Matiss" substation is modern indoor substation, which is located in Riga city center. 110 kV substation "Liepajas metalurgs" is constructed prior to metal melting factory in Liepaja town with two new cable lines from Grobina substation.

The main need for Riga CHP1–Imanta 330 kV cable line construction is Riga 330 kV to close transmission ring around the Riga city and to provide reliable connection point for Kurzeme Ring project. Planned Riga CHP1–Imanta 330 kV cable commissioning date is 2012.

The Major Projects of Latvian Transmission Grid

The major projects are:

- Construction of new gas-steam 442 MW unit in Riga CHP2;
- The second 400 MW unit in Riga CHP–2 has to be constructed;
- Construction of Riga CHP1-Imanta 330 kV cable line in Riga;
- Latvia Western Region 330 kV transmission network (Kurzeme Ring) construction;
- Third Latvia-Estonia interconnection;
- 110 kV Milgravis–Bolderaja transmission line.

Lithuania

Control-room of LITGRID UAB

Current Situation of Transmission Grid

Transmission grid in Lithuania consists of 110 and 330 kV transformer substations and lines. Lietuvos Energija AB owns 229 transformer substations and switchyards, more than 6670 kilometres of 330 kV and 110 kV electric lines, the Kaunas Hydro Power Plant and the Kruonis Pumped Storage Plant. Both power plants are the main tools for ensuring capacity balances and regulation of regimes.

Lithuanian transmission system is interconnected by four %] H lines with Latvia, five with Belarus and three with Russia (the Kaliningrad Region). One of the main objectives of Lietuvos Energija AB is the integration of Lithuania's power system into the Western European electricity market along with the development of regional co-operation. By utilising the common capabilities of the power systems of the Baltic States, establishment of the Common Baltic Electricity Market needed for successful integration of the Baltic States into the electricity markets of Western Europe and the Nordic countries is projected.

Lietuvos Energija AB is one of the constituent parts in the parallely operating power systems of the Baltic States, Russia and Belarus, and manages energy flows vitally important to both industry and households. In 2009, the construction of these substations was completed:

- Construction of 110 kV Sūdėnų wind farm switchyard;
- 110/10 kV Šventininkai TS.

The substations were reconstructed in 2009:

- 330 kV Vilnius TS;
- For 110/35/10 kV transformer substations Noreikiškės TS.

About 131 km of 110 kV electric lines were resconstructed.

In 2009 a new hydroturbine (No. 4) regulatory system was installed in Kruonis HPSPP. Thermocontrol system modernization was made in all power plants' hydrounits. In Kruonis HPSPP new drivers were installed and the monitoring software was updated.

Presently, the total installed capacity of power plants operating in the Lithuanian power system equals 5110 MW. Taking into consideration that a part of this capacity is used for own needs of power plants, the maximum available capacity equals approx. 4684 MW.

The Major Projects of Lithuanian Transmission Grid

The major projects are:

- Construction of new generatig units in power plants (Visaginas NPP, Lietuvos PP, Kruonis PSPP and etc.);
- Integration of new renewable energy sources;
- Construction of new interconnections (Lithuania-Poland and Lithuania-Sweden);
- 330 kV Alytus substation reconstruction;
- Network preparation for synchronous connection with TESIS (new internal transmission lines, new PP and etc.).

Forty-five year's experience as a dispatcher

The closure of the Ignalina nuclear power plant was definitely a historical event, however, the biggest changes in our operation occurred after having regained the Independence, when the dispatch services were unbundled from the former Soviet Union jurisdiction. Just at the time as the operation of electricity transmission system of the three Baltic States was being adjusted we faced the largest number of new challenges.

The main goal currently set for power energy is the connection with the West. Having built the power bridges connecting Lithuania with Poland and Sweden, the work of a dispatcher will become even more complicated: a level of responsibility will increase and the communication with neighbouring power systems will be established in several foreign languages.

In my opinion, pursuing the earlier mentioned strategic goals and working day after day, we have to further aim at preserving unity, which is the most important. The cooperation between electricity transmission system operators of the Baltic States secures two main factors: mutual assistance and safety.

> Arūnas Konradas Vasilis Vasiliauskas LITGRID UAB

STATISTICS

Key Operational Indicators of Baltic TSO's in 2009

	MEASURE	ESTONIA	LATVIA	LITHUANIA	BALTIC IPS
Installed capacity 2009 (net)	MW	2440	2523	4684	9647
Share of Baltic IPS	%	25	26	49	100
Peak load	MWh	1462	1340	1713	4515
Net consumption in 2009	GWh	7506	7029	+' 6\$	2&" +)
Net consumption in 2008	GWh	8036	7573	1"' &"	2(#&+
Change compared to 2008	%	-7.1	-7.7	-#" .\$	-8.'
Total net generation in 2009	GWh	7504	5376	13500	26380
Nuclear PP	GWh			10025	10025
Thermal PP	GWh	7055	1902	2190	1114)
Hydro PP	GWh		3425	345	3770
HPSPP (gen)				715	715
Wind PP	GWh	176	49	141	366
OtherPP	GWh	273		83	356
Total net generation in 2008	GWh	9103	5053	1\$%#)	2(&)%
Change compared to 2008	%	-21.4	6.0	* *	-".3'
Population	thousand	1340	2250	3330	6920
Consumption per capita]Wh	5602	3124	\$*7\$	3&*\$
Export of electric power	GWh	321**	2603**	7715ffl	
Import of electric power	GWh	3221*	4257**	4783f f l	
System saldo	GWh	-2	-1654	2932	
Output to grid	GWh	1072'	963%	1*2*%	
Losses in main grid 2009	GWh	332	281	%#&	9\$)
	% of output	3.10	2.92	#.) \$	
Losses in main grid 2008	GWh	385	288	3' \$	10\$'
Change compared to 2008	%	-16	-2.5	-12.\$	-10.(#

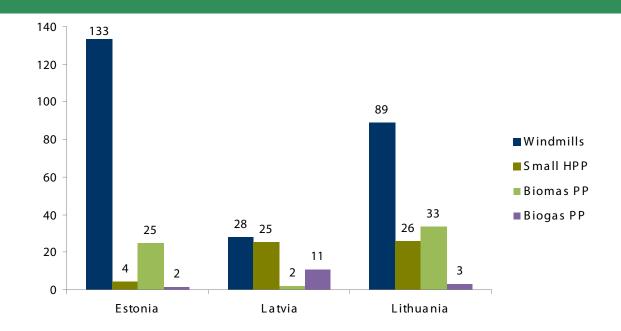
* Include ESTLINK ** Physical

Length of Overhead and Cable Power Transmission Lines in the Baltic Interconnected States

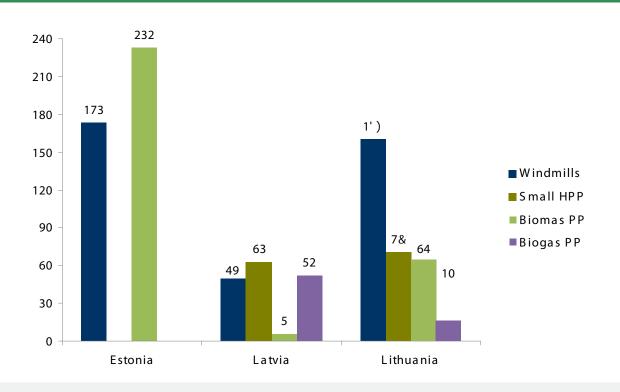
	ESTONIA	LATVIA	LITHUANIA	BALTIC IPS
Length of 330 kV OHL, km	1541	1249	1670	4460
Length of 220 kV OHL, km	184.3			184.3
Length of 110 kV OHL, km	3434	3910	4972	12316
Length of 110 kV CL, km	41.35	65.34	39	145.69
Number of 330 kV transformers	16	21	22	' +
Capacity of 330 kV transformers	2680	3200	3750	+(30

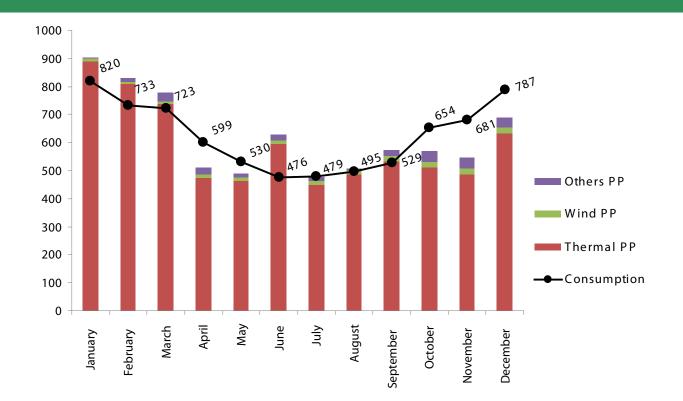
Installed Capacity of Different Types of Plants in the Baltic Interconnected States

	ESTONIA	LATVIA	LITHUANIA	BALTIC IPS
TOTAL	2440	2523	4684	9647
Conventional thermal PP*	2303	937	2576	5816
Hydro PP	4	1558	76	1638
Hydro pump storage PP			760	760
Nuclear PP			1183	1183
Wind PP	133	28	89	250

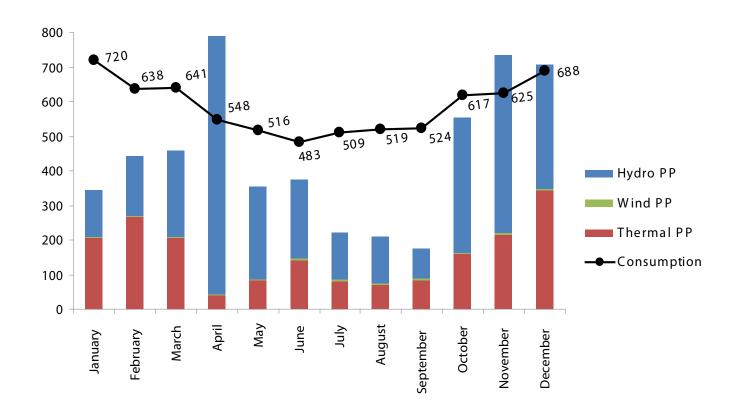

* Thermal power plants plus combined heat and power (CHP) plants

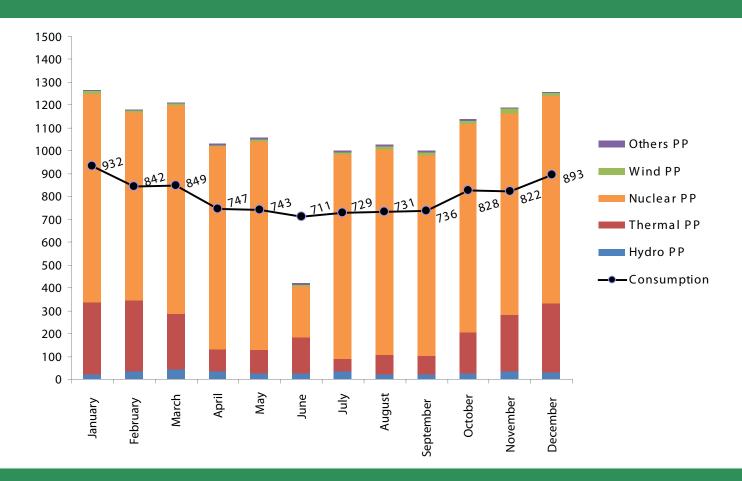
Installed Capacity of Power Plants, MW


	INSTALLED CA	APACITY (GROSS)	INSTALLED CA	PACITY (NET)
	2008	2009	2008	2009
ESTONIA	2736	2840	2330	2440
Balti PP	765	765	654	654
Eesti PP	1615	1615	1346	1346
IRU CHP	176	176	176	156
Windmill	65	133	65	133
Small PP	112	147	86	147
Hydro PP	3	4	3	4
LATVIA	2566	2612	2476	2523
Piavinas HPP	869	884	860	875
Kegums HPP	264	264	261	261
Rigas HPP	402	402	397	397
RCHP-1	144	144	139	139
RCHP-2	662	662	597	597
Imanta CHP	45	45	42	42
Windmill	25	28	25	28
Small PP	155	184	155	184
LITHUANIA	507"	511#	46&*	4684
Ignalina NPP	1300	1300	1183	1183
Lietuvos PP	1800	1800	1732	1732
Vilnius CHP	372	360	355	342
Mažeikiai CHP	160	160	148	148
Kaunas TPP	170	170	161	161
Kaunas HPP	101	101	50*	50*
Kruonis PSP	900	900	760	760
Petrašiūnai TPP	8	8	7	7
Klaipėda CHP	11	11	9	9
Panevėžio CHP	35	35	33	33
Small hydro PP	26	27	26	26
Windmill	68	91	68	89
Biomass	21	38	20	37
Auto producers	98	110	96	107


* By 2010 only two units of Kaunas HPP will be in operation

Subsidized Energy Installed Capacity in the Baltic Interconnected States, MW


Subsidized Energy Production in the Baltic Interconnected States, GWh


Net Consumption and Production by Month in Estonia, GWh

Month	Consumption	Thermal PP	Wind PP	Others PP	Import	Export	Total
January	820	889	10	5	319	403	904
February	733	808	8	15	245	343	831
March	723	738	9	32	275	331	779
April	599	473	11	25	372	282	509
May	530	460	14	17	264	225	491
June	476	594	15	21	137	291	630
July	479	450	12	15	171	169	477
August	495	486	12	8	141	152	506
September	529	531	21	22	194	239	574
October	654	509	22	39	317	233	570
November	681	485	21	39	410	274	545
December	787	632	21	35	376	277	688
Total	7506	7055	176	273	3221	3219	7504

Net Consumption and Production by Month in Latvia, GWh

Month	Consumption	Thermal PP	Hydro PP	Wind PP	Import	Export	Total
January	720	205	134	5	494	118	345
February	638	269	171	3	339	144	442
March	641	206	249	3	347	165	459
April	548	40	748	3	170	413	791
May	516	83	268	4	392	231	355
June	483	143	229	4	297	189	376
July	509	81	138	3	414	127	223
August	519	72	135	4	437	129	210
September	524	82	88	6	420	72	176
October	618	159	391	5	341	278	555
November	625	217	514	6	273	385	737
December	688	344	361	4	333	353	708
Total	7029	1902	3425	49	4257	2603	5376

Net Consumption and Production by Month in Lithuania, GWh

Month	Consumption	Thermal PP	Hydro PP	Nuclear PP	Hydro pumped- storage PP	Wind PP	Others PP	Import	Export	Total	Hydro pumped- storage PP pumping
January	932	315	21	913	64	11	4	403	701	1328	98
February	842	311	34	824	56	7	4	315	635	1237	76
March	849	246	42	909	54	8	7	317	655	1265	78
April	747	99	34	885	52	7	8	494	763	1084	69
May	743	104	26	910	43	10	9	432	724	1101	65
June	711	158	26	219	59	10	9	546	237	481	79
July	729	57	33	894	56	9	9	396	651	1058	75
August	731	87	21	898	68	11	9	354	618	1094	100
September	736	85	20	874	57	17	8	340	586	1059	78
October	828	181	25	909	66	16	7	437	723	1205	90
November	822	246	33	883	67	21	6	346	685	1257	96
December	893	301	31	907	74	14	4	403	737	1331	103
Total	9562	2190	345	10025	715	141	83	4783	7715	13500	1006

Peak Load in the Baltic Interconnected States

	Peak			Temperature			Gei	neration,	MW		
TSO	load, MWh	Date	Time, h	at the time of max, C	Thermal PP	Nuclear PP	Kruonio HPSPP	Hydro PP	ESTLINK	Windmills	Small PP
Estonia (net)	1462	2009.12.18	17:00	-14	1340					24	21
Latvia (gross)	1340	2009.01.05	18:00	-12	243			438		3	34
Lithuania (net)	1713	2009.01.05	18:00	-15	334	1223	355	20		6	31
Baltic IPS	4515				1917	1223	355	458		33	86

Minimum Load in the Baltic Interconnected States

	Peak				Generation, MW						
TSO	load, MWh	Date	Time, h	at the time of max, ⁰C	Thermal PP	Nuclear PP	Kruonio HPSPP	Hydro PP	ESTLINK	Windmills	Small PP
Estonia (net)	403	2009.06.24	05:00	9	601					25	20
Latvia (gross)	371	2009.06.26	06:00	20	247			214		11	29
Lithuania (net)	628	2009.07.06	06:00	8	61	1204	-439	35		1	30
Baltic IPS	1402				909	1204	-439	249		37	79

Peak Load and Average Temperatures in the Baltic Interconnected States by Month

	January	February	March	April	May	June	July	August	September	October	November	December	Average of year
Estonian peak load (net), MWh	1404	1369	1246	1090	933	906	831	890	953	1210	1229	1462	1127
Average ambient tem- perature	-1.9	-4.3	-0.7	5.4	10.8	13.5	16.9	16.1	13.6	5	2.8	-3.9	6.1
Normal tem- perature	-5.5	-5.7	-2.1	3.4	9.8	14.5	16.4	15.5	11.1	6.5	1.4	-2.8	5.2
Latvian peak load (gross), MWh	1340	1238	1112	1030	957	885	849	865	928	1058	1122	1264	1054
Average ambient tem- perature	-1.6	-2.8	0.9	8.4	12.9	15.3	18.8	17.4	14.8	5.9	4.3	-2	7.7
Normal tem- perature	-5.3	-4.9	-1.3	4.5	10.9	14.9	16.4	15.7	11.4	6.8	1.6	-2.7	5.7
Lithuanian peak load (net), MWh	1713	1627	1500	1391	1292	1273	1274	1278	1312	14**	1526	1665	1445
Average ambient tem- perature	-1.9	-2.5	1.4	8.3	13.3	15.5	19.7	17.8	14.7	5.6	4.1	-2.1	7.8
Normal tem- perature	-5.1	-4.6	-0.7	5.4	11.9	15.4	16.7	16.2	11.9	7.2	2.0	-2.0	6.2

Estonian Net Consumption and Production on Day of Peak Load (Net), MWh/h (18 December 2009)

Hour	CONSUMPTION	GENERATION	BATLI PP	EESTI PP	IRU CHP	WINDMILL	SMALL PP	ESTLINK
1	1054	1069	144	860	0	27	38	380
2	1014	1030	144	818	0	30	38	380
3	997	1009	144	793	0	33	38	380
4	994	1003	145	788	0	33	38	380
5	999	1111	144	897	0	33	37	380
6	1034	1138	145	948	0	26	20	380
7	1143	1213	144	1028	0	26	15	380
8	1292	1374	142	1190	0	27	15	379
9	1403	1362	141	1181	0	25	15	379
10	1419	1355	140	1188	0	19	8	379
11	1419	1348	141	1186	0	19	3	362
12	1409	1349	143	1186	0	19	1	382
13	1387	1349	142	1186	0	18	3	383
14	1385	1361	142	1187	0	19	12	383
15	1372	1371	144	1193	0	17	17	383
16	1397	1376	144	1193	0	18	22	383
17	1462	1385	145	1194	0	24	21	383
18	1450	1392	145	1195	0	30	23	383
19	1414	1408	144	1197	0	34	34	383
20	1373	1415	144	1196	0	41	34	383
21	1329	1413	144	1195	0	44	29	383
22	1279	1346	143	1128	0	45	30	383
23	1208	1254	145	1034	0	44	30	383
24	1141	1140	145	924	0	42	29	381

Estonian Net Consumption and Production on Day of Minimum Load (Net), MWh/h (24 June 2009)

HOUR	CONSUMPTION	ONSUMPTION GENERATION		EESTI PP	IRU CHP	WINDMILL	SMALL PP	ESTLINK
1	503	821	0	776	0	24	21	-68
2	485	792	0	755	0	16	21	-65
3	463	787	0	748	0	18	20	-65
4	428	668	0	629	0	20	19	-168
5	403	647	0	601	0	25	20	-174
6	405	644	0	597	0	26	21	-176
7	418	682	0	641	0	20	21	-167
8	447	768	0	739	0	9	21	-70
9	491	826	0	800	0	5	20	-52
10	531	855	0	828	0	7	20	-65
11	558	888	0	858	0	10	21	-65
12	574	895	0	861	0	12	21	-65
13	576	917	0	878	0	18	21	-65
14	573	917	0	870	0	25	21	-65
15	571	920	0	871	0	27	21	-65
16	564	905	0	855	0	29	21	-65
17	567	902	0	855	0	25	21	-65
18	574	900	0	856	0	23	21	-65
19	578	909	0	866	0	21	22	-65
20	580	917	0	877	0	17	23	-65
21	582	931	0	889	0	19	23	-65
22	576	908	0	863	0	20	25	-65
23	562	905	0	855	0	25	25	-65
24	546	902	0	841	0	38	23	-65

Latvian Net Consumption and Production on Day of Peak Load (Gross), MWh/h (5 January 2009)

HOURCONSUMPTIONGENERATIONPLAVINASKEGUMSRIGASRCHP-1RCHP-2IMANTAWINDMILLSMALL18252760001356541134277027500013465411343747277000134654223447402760001336342334575127500013363421346800273000133634213479412730001336441034912474861793501326441134101278540181551011356433234111289605181551011366438234121277611181551011376340234141232520905510013663411341512275229055101137634113416123061218055101137654103417 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	HOUR	CONSUMPTION	GENERATION				RCHP-1	RCHP-2		WINDMILL	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	825	276	0	0	0	135	65	41	1	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	770	275	0	0	0	134	65	41	1	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	747	277	0	0	0	134	65	42	2	34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	740	276	0	0	0	134	64	41	3	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	751	275	0	0	0	133	63	42	3	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	800	273	0	0	0	133	63	42	1	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	941	273	0	0	0	133	63	41	2	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1129	450	178	0	0	133	64	41	0	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	1247	486	179	35	0	132	64	41	1	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	1278	540	181	35	51	132	63	41	3	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	1289	605	181	55	101	135	64	33	2	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	1277	611	181	55	101	136	64	38	2	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	1231	522	90	55	101	137	63	40	2	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	1232	520	90	55	100	136	63	41	1	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	1227	522	90	55	100	137	64	41	1	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	1230	612	180	55	101	137	63	41	1	34
191329714271117511376341034201293674180116101137654103421125461018054101136644103422119456618154511376541334231080385891801376442134	17	1305	564	181	55	51	137	65	41	0	34
20 1293 674 180 116 101 137 65 41 0 34 21 1254 610 180 54 101 136 64 41 0 34 22 1194 566 181 54 51 137 65 41 3 34 23 1080 385 89 18 0 137 64 42 1 34	18	1340	718	270	117	51	137	65	41	3	34
21125461018054101136644103422119456618154511376541334231080385891801376442134	19	1329	714	271	117	51	137	63	41	0	34
22 1194 566 181 54 51 137 65 41 3 34 23 1080 385 89 18 0 137 64 42 1 34	20	1293	674	180	116	101	137	65	41	0	34
23 1080 385 89 18 0 137 64 42 1 34	21	1254	610	180	54	101	136	64	41	0	34
	22	1194	566	181	54	51	137	65	41	3	34
24 958 277 0 0 137 64 41 1 34	23	1080	385	89	18	0	137	64	42	1	34
	24	958	277	0	0	0	137	64	41	1	34

Latvian Net Consumption and Production on Day of Minimum Load (Gross), MWh/h (26 June 2009)

HOUR	CONSUMPTION	GENERATION	PLAVINAS HPP	KEGUMS HPP	rigas HPP	RCHP-1	RCHP-2	IMANTA CHP	WINDMILL	SMALL PP
1	494	535	180	71	0	0	221	26	8	29
2	463	441	89	71	0	0	222	22	8	29
3	435	437	89	71	0	0	221	22	5	29
4	410	403	89	35	0	0	221	22	7	29
5	375	408	90	35	0	0	222	22	10	29
6	371	501	179	35	0	0	223	24	11	29
7	389	504	179	35	0	0	221	32	8	29
8	410	591	179	71	51	0	221	32	8	29
9	453	591	179	71	50	0	222	32	8	29
10	493	416	89	36	0	0	221	32	9	29
11	528	466	90	36	50	0	220	32	9	29
12	547	508	89	71	51	0	222	32	14	29
13	553	508	90	70	50	0	221	33	15	29
14	558	508	89	70	50	0	222	32	16	29
15	553	523	90	34	100	0	222	33	15	29
16	548	503	89	18	101	0	221	33	12	29
17	548	505	89	18	100	0	221	33	15	29
18	560	507	89	18	102	0	221	33	15	29
19	572	597	179	70	50	0	221	33	15	29
20	579	502	89	70	50	0	220	33	11	29
21	589	596	180	70	51	0	222	33	11	29
22	591	556	179	36	50	0	220	33	9	29
23	582	555	179	36	51	0	220	33	7	29
24	556	559	179	36	51	0	221	33	10	29

Lithuanian Net Consumption and Production on Day of Peak Load (Net), MWh/h (5 January 2009)

HOUR	CONSUMPTION	GENERATION	IGNALINA NPP	LIETUVOS PP	VILNIUS CHP 3	KAUNAS CHP	MAZEIKAI CHP	KAUNAS HPP	KRUONIO HPSPP	WIND- MILL	SMALL PP
1	1013	1604	1221	72	120	140	0	24	-218	3	27
2	957	1604	1222	72	120	140	0	24	-218	3	26
3	930	1603	1220	72	121	140	0	24	-217	4	26
4	924	1610	1224	73	121	139	0	24	-289	5	29
5	937	1608	1221	71	121	139	0	24	-297	7	32
6	1002	1610	1224	71	120	140	0	24	-217	7	31
7	1223	1605	1222	71	120	140	0	24	-76	4	28
8	1441	1745	1222	72	120	140	0	24	141	3	26
9	1570	1812	1216	72	121	140	0	21	218	3	24
10	1603	1817	1216	73	121	140	0	21	217	4	29
11	1621	1824	1228	73	121	140	0	21	213	4	28
12	1621	1814	1222	73	121	140	0	21	209	5	28
13	1580	1810	1219	72	121	140	0	21	208	7	29
14	1566	1816	1222	73	121	140	0	21	211	5	28
15	1549	1813	1220	73	121	140	0	20	210	6	29
16	1550	1816	1223	72	121	140	0	20	209	5	31
17	1623	1873	1222	72	121	140	0	20	265	7	33
18	1713	1963	1223	72	121	141	0	20	355	6	31
19	1693	1957	1225	72	121	140	0	20	350	4	29
20	1654	1943	1223	72	120	140	0	21	339	4	28
21	1603	1924	1221	72	120	140	0	21	319	6	31
22	1498	1785	1223	72	121	140	0	21	181	4	27
23	1326	1684	1221	73	121	139	0	19	84	2	27
24	1180	1599	1222	72	121	140	0	20	-118	1	24

Lithuanian Net Consumption and Production on Day of Minimum Load (Net), MWh/h (6 July 2009)

HOU	R CONSUMPTION	GENERATION	IGNALINA NPP	LIETUVOS PP	VILNIUS CHP 3	KAUNAS CHP	MAZEIKAI CHP	KAUNAS HPP	KRUONIO HPSPP	WIND- MILL	SMALL PP
1	779	1335	1198	61	0	0	0	30	-218	17	29
2	712	1331	1201	61	0	0	0	30	-218	13	26
3	682	1322	1200	61	0	0	0	30	-241	6	25
4	658	1319	1201	62	0	0	0	30	-440	4	22
5	636	1317	1200	61	0	0	0	30	-439	1	25
6	628	1331	1204	61	0	0	0	35	-439	1	30
7	665	1340	1202	61	0	0	0	49	-355	1	27
8	730	1335	1202	61	0	0	0	44	-216	1	27
9	811	1325	1198	61	0	0	0	40	-27	0	26
10	885	1428	1197	61	0	0	0	49	98	0	23
11	937	1493	1196	61	0	0	0	50	162	0	24
12	957	1543	1196	61	0	0	0	50	211	1	24
13	963	1557	1195	61	0	0	0	50	225	1	25
14	956	1559	1195	61	0	0	0	50	224	2	27
15	951	1564	1198	61	0	0	0	50	223	4	28
16	936	1561	1196	61	0	0	0	50	223	5	26
17	929	1558	1195	61	0	0	0	50	222	3	27
18	930	1560	1197	61	0	0	0	50	221	4	27
19	931	1562	1200	61	0	0	0	50	220	3	28
20	936	1547	1201	62	0	0	0	50	204	3	27
21	945	1379	1200	60	0	0	0	50	34	3	32
22	951	1405	1199	61	0	0	0	50	66	5	24
23	950	1423	1201	61	0	0	0	50	77	6	28
24	870	1339	1198	61	0	0	0	50	-75	6	24

###