

The Nordic Capacity Calculation Methodology (CCM) project

MESC Brussels, 8 June 2018

FINGRID

1. Overview of the Nordic CCM project

- 2. Mathematical description
- 3. Operational security limits, contingencies and remedial actions

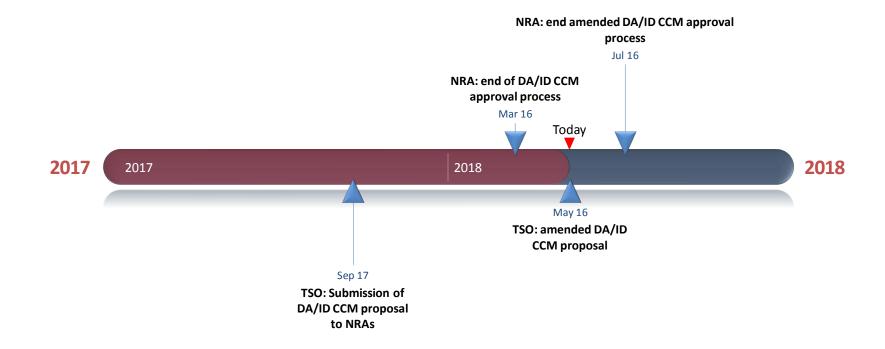
FINGRID

- 4. Shift keys
- 5. Reliability margin
- 6. Internal and cross zonal exchanges

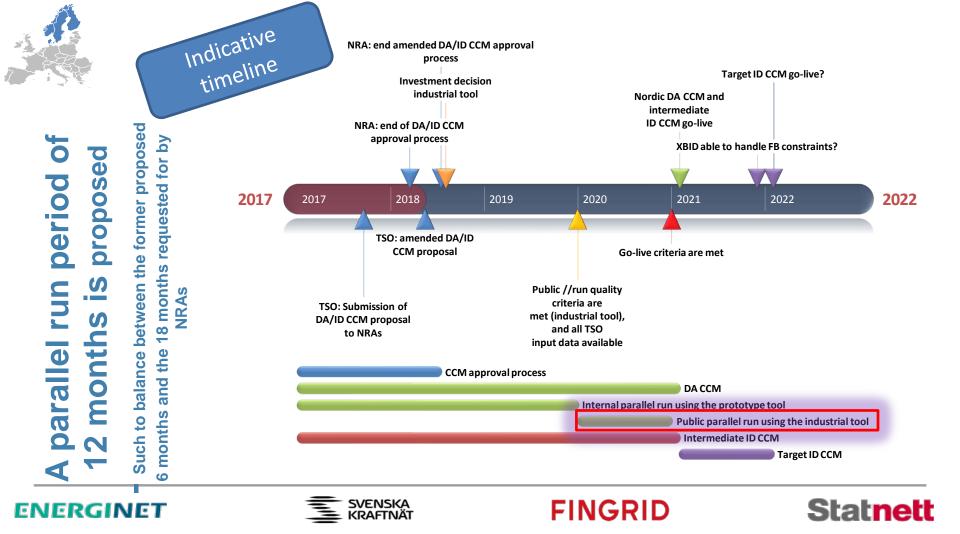
Proposal

- Day-ahead: Flowbased
- Intraday: Stepwise implementation
 - ✓ Interim solution: CNTC
 - Go-live together with DA FB go-live
 - ✓ Long term target: flow based
 - XBID able to handle FB parameters
 - FB tested and proven to be efficient in DA in ID

A brief history of the Nordic CCM project


18 Sept. **CCM** proposal

2010/2011	2012	2013	2014	2015	2016	2017
	Internal TSO phas	ie 🔵	External communication $ ightarrow$ Stakeholder Forums $ ightarrow$ Stakeholder Group $ ightarrow$ News letters $ ightarrow$ Info platform			


Amended CCM proposal submitted on May 16

FINGRID

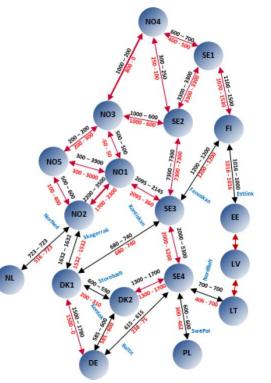
Statnett

Characteristics of the Nordic FB

- Critical Network Elements (CNE):
 - ✓ Tielines and internal network elements
- Cuts: multiple lines modelled as a single CNE, with its own RAM and PTDFs
 - ✓ Voltage and dynamic constraints
- Number of presolved FB constraints
 - ✓ Around 85
- ✤ CNE selection
 - ✓ A method is being developed to select CNEs based on operational security and economic efficiency

Statnett

FINGRID

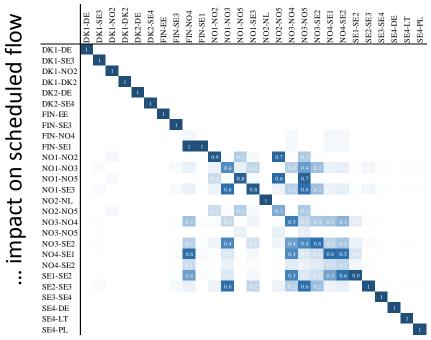


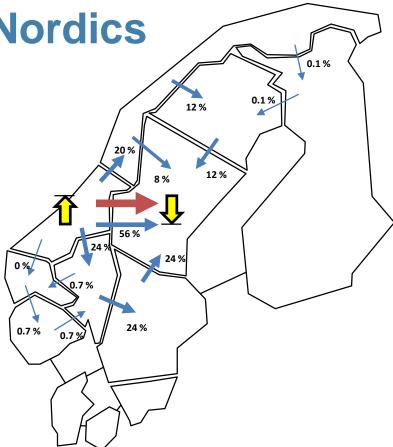
Characteristics of the Nordic FB

- Advanced Hybrid Coupling is applied on all DC links.
- Number of Bidding Zones: 28
 - ✓ Nordic bidding zones: 12
 - ✓ Virtual bidding zones: 14
 - Due to the high dimensionality of the FB domain, the vertices and volume cannot be (easily) computed
- ✤ Two synchronous areas
 - DK1 is part of the continental European synchronous system
- ✤ FB plain is applied
 - Running the intuitive patch poses issues given the high dimensionality of the FB domain (overconstraining the system)

Statnett

FINGRID





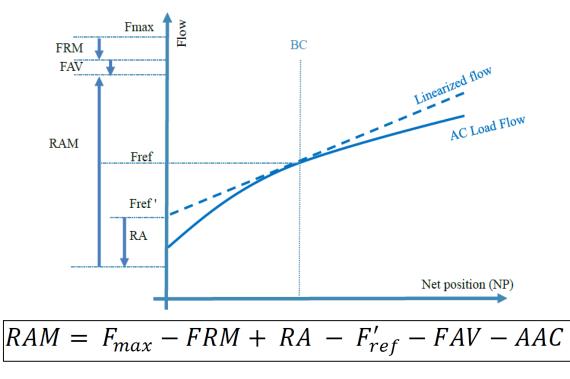
Transit flows in the Nordics

Commercial exchange between areas ...

FINGRID

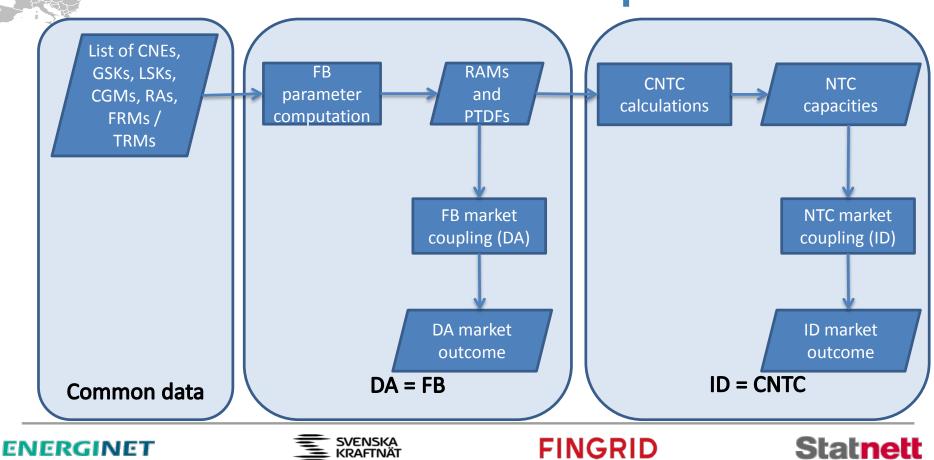
- 1. Overview of the Nordic CCM project
- 2. Mathematical description
- 3. Operational security limits, contingencies and remedial actions

FINGRID


- 4. Shift keys
- 5. Reliability margin
- 6. Internal and cross zonal exchanges

Mathematical description

- Critical network elements (CNEs) can be
 - ✓ Cuts with stability limits or
 - ✓ "CBCO" with thermal limits


Statnett

- Each CNE is sent as a market constraint defined by
 - ✓ RAM and PTDF

FINGRID

Mathematical description

DA capacity calculation

✤ FB for DA

Constraints sent to the DA FB market

- ✓ FB constraints = CNE constraints: PTDF*NP<RAM</p>
- ✓ Non FB constraints = Allocation constraints:
 - Ramping constraints on HVDC cable
 - Threshold value on the net position of some areas
 - Implicit loss factors of DC links (ensuring that the DC link will not flow unless the welfare gain of flowing exceeds the costs of the corresponding losses)

FINGRID

ID capacity calculation

- Interim solution: CNTC
- ID CNTC calculations
 - ✓ Maximum exchanges on bidding zone borders are calculated using CGMs, GSKs, contingencies and operational security limits and adjusted taking into account RAs available for capacity calculation
 - ✓ Sharing rules are applied for interdependent borders: Aim is to maximise cross-zonal trading possibilities by taking into account the CGM base case for each hour
 - ✓ Finally TRM and AAC are taken into account
- Frequency update:
 - ✓ First computation for gate opening before D-1 CGM is available
 - ✓ Second computation after D-1 CGM is available and CSA performed
 - Other computations if needed (CSA is planned to be performed at least 3 times)

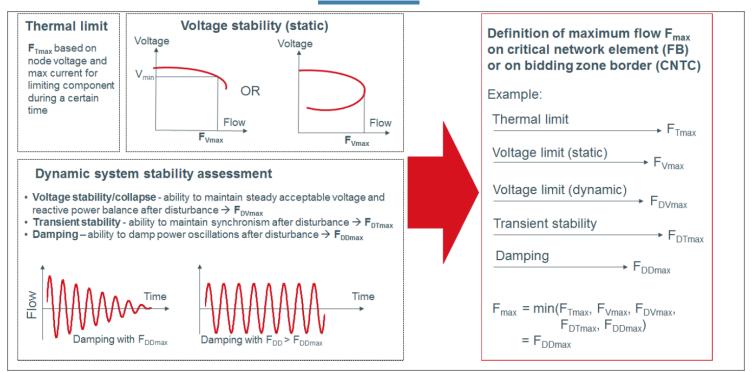
FINGRID

FINGRID

- 1. Overview of the Nordic CCM project
- 2. Mathematical description
- 3. Operational security limits, contingencies and remedial actions
- 4. Shift keys
- 5. Reliability margin
- 6. Internal and cross zonal exchanges

Contingency list, operational security limits and remedial actions

- Coordination with operational security analysis and DA capacity calculations
 - Same contingencies, operational security limits and remedial actions are applied in DA and ID capacity calculations and in operational security analysis


FINGRID

Contingency list and <u>operational security</u> limits

FINGRID

Statnett

- 1. Overview of the Nordic CCM project
- 2. Mathematical description
- 3. Operational security limits, contingencies and remedial actions

FINGRID

- 4. Shift keys
- 5. Reliability margin
- 6. Internal and cross zonal exchanges

Shift keys

Strategy number	GSK	LSK	Description/comment
0	k _g	k _l	Custom TSO GSK strategy with individual set of participating factors for each generator unit and load for the MTU
1	$\max\{\mathbf{P}_{g} - \mathbf{P}_{\min}, 0\}$	0	Generators participate relative to their margin to the generation minimum (MW) for the unit
2	$\max\{\mathbf{P}_{\max} - \mathbf{P}_{g}, 0\}$	0	Generators participate relative to their margin to the installed capacity (MW) for the unit
3	P _{max}	0	Generators participate relative to their maximum (installed) capacity (MW)
4	1.0	0	Flat participation of all generators, independently of the size of the generator unit
5	Pg	0	Generators participate relative to their current power generation (MW)
6	Pg Pl		Generators and loads participate relative to their current power generation or load (MW)
7	0	P1	Loads participate relative to their power loading (MW)
8	0	1.0	Flat participation of all loads, independently of size of load
where			

 & 8+1 strategies for shift keys proposed

- Bidding zones can have different shift key strategies
- Optimal GSK strategies
 = minimize overall
 reliability margin

Statnett

FINGRID

where

- kg: Participation factor [pu] for generator g
- k₁: Participation factor [pu] for load l
- \mathbf{P}_{g} : Current active generation [MW] for generator g
- P_{min} : Minimum active power generator output [MW] for generator g
- \mathbf{P}_{\max} : Maximum active power generator output [MW] for generator g
- Pload: Current active power load for load l

- 1. Overview of the Nordic CCM project
- 2. Mathematical description
- 3. Operational security limits, contingencies and remedial actions

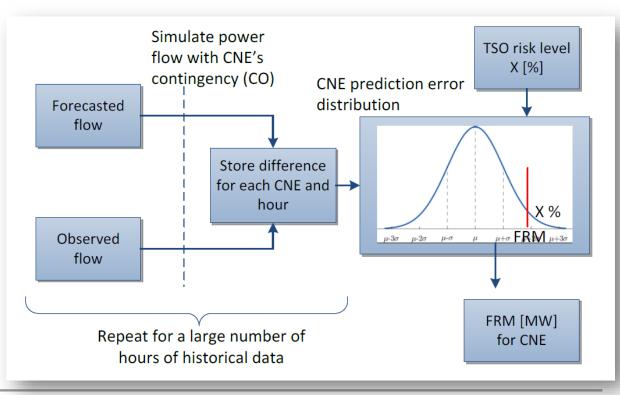
FINGRID

Statnett

4. Shift keys

5. Reliability margin

6. Internal and cross zonal exchanges

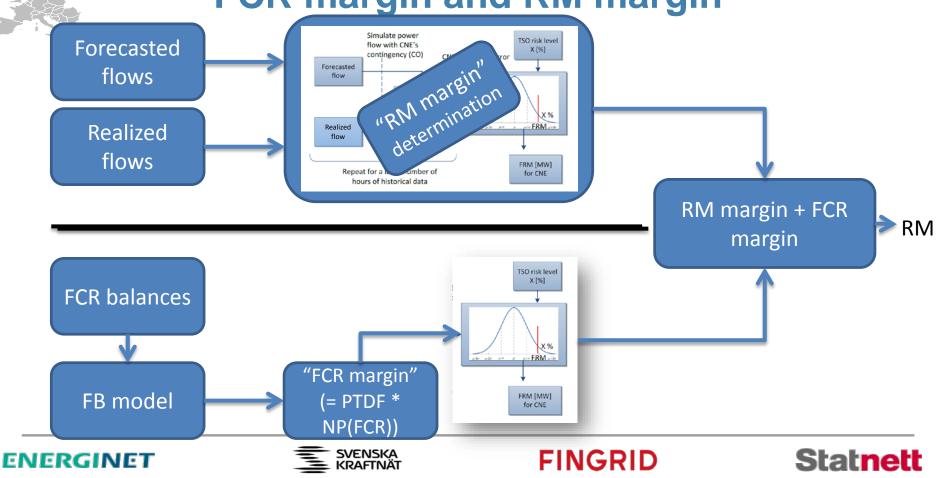

Reliability Margin (RM)

The forecasted flow:

- Is the flow predicted by the FB model:
 F_forecasted =
 Fref'+NP*PTDF
- Where NP are the import and export positions from the realized schedules at the time of making the observation

Or in other words:

 When the FB model would have been perfect, the forecasted flow should equal the observed flow



FINGRID

Statnett

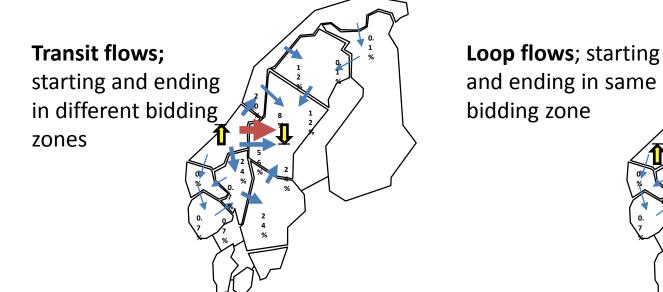
FCR margin and RM margin

- 1. Overview of the Nordic CCM project
- 2. Mathematical description
- 3. Operational security limits, contingencies and remedial actions

FINGRID

Statnett

- 4. Shift keys
- 5. Reliability margin


6. Internal and cross zonal exchanges

FRGINET

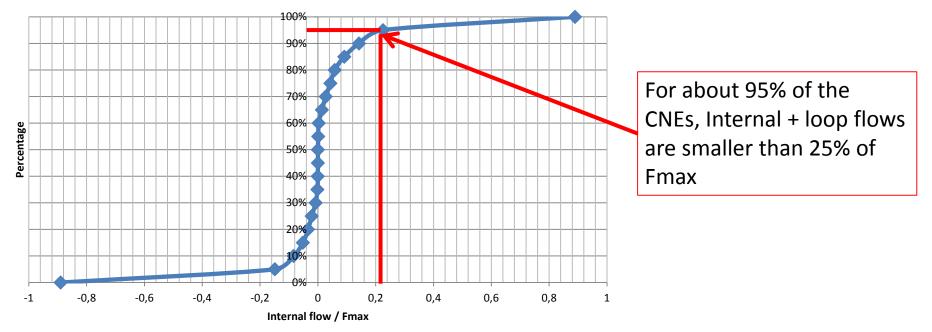
Loop flows vs Transit flows

FINGRID

Analysis of internal and loop flows in the Nordics

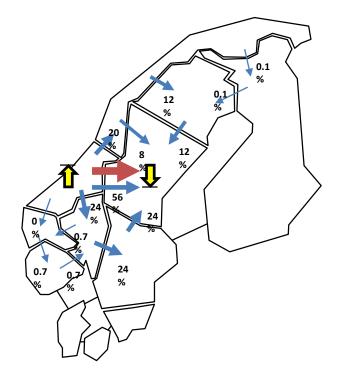
- One day of data was used to analyze the magnitude of internal and loop flows in the Nordic system
- ✤ About 1500 CNEs per hour
 - ✓ Between 450 and 600 CNEs are market relevant for each hour
- ✤ 24 hours of one day are analyzed
- The sum of internal and loop flows is computed for each CNE
- Report on the ratio between internal flows and Fmax (Fmax: capacity of the CNE)

FINGRID



Internal and loop flows in CNEs

Cumulative distribution function of internal + loop flows / Fmax for CNEs


FINGRID

Thank you!

FINGRID

