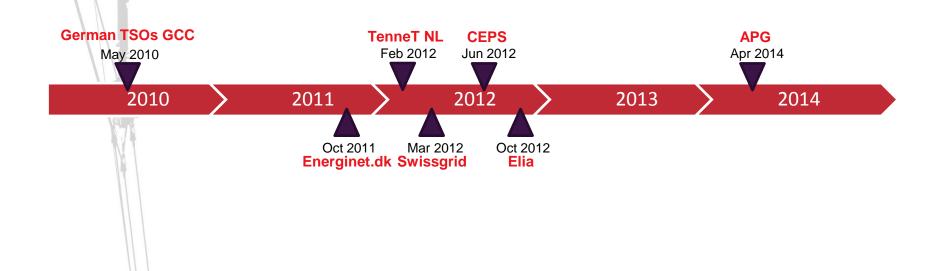


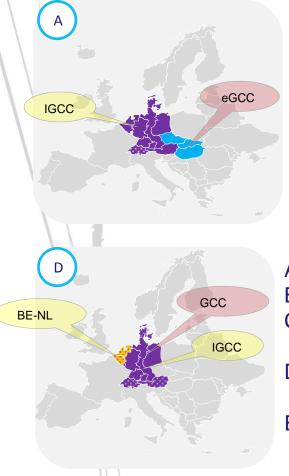
IGCC workshop

3.11.2014, Brussels

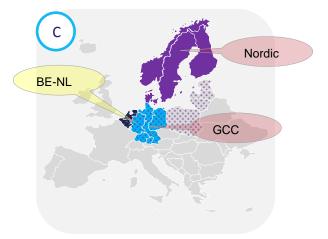


General introduction

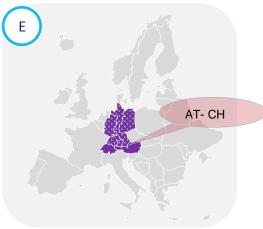
IGCC Introduction


 Since May 2010, all four German TSOs have launched the so called <u>Grid Control Cooperation (GCC)</u> to optimize secondary control procurement and activation

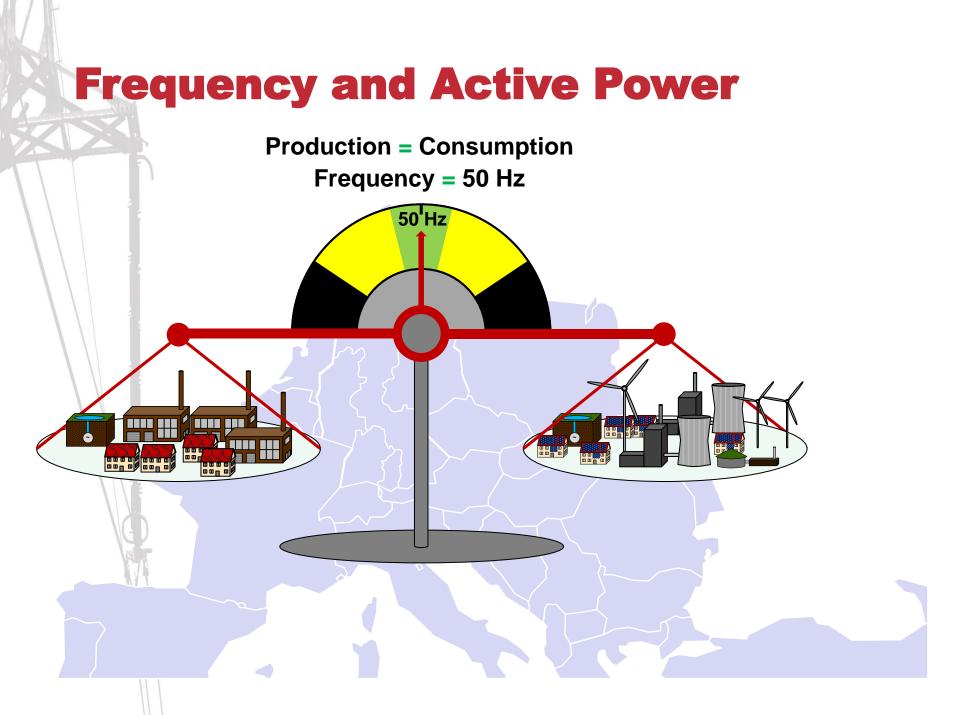
 Many aspects of the GCC system are open for a contribution of TSO's from neighboring countries, so called <u>International Grid Control Cooperation (IGCC)</u>

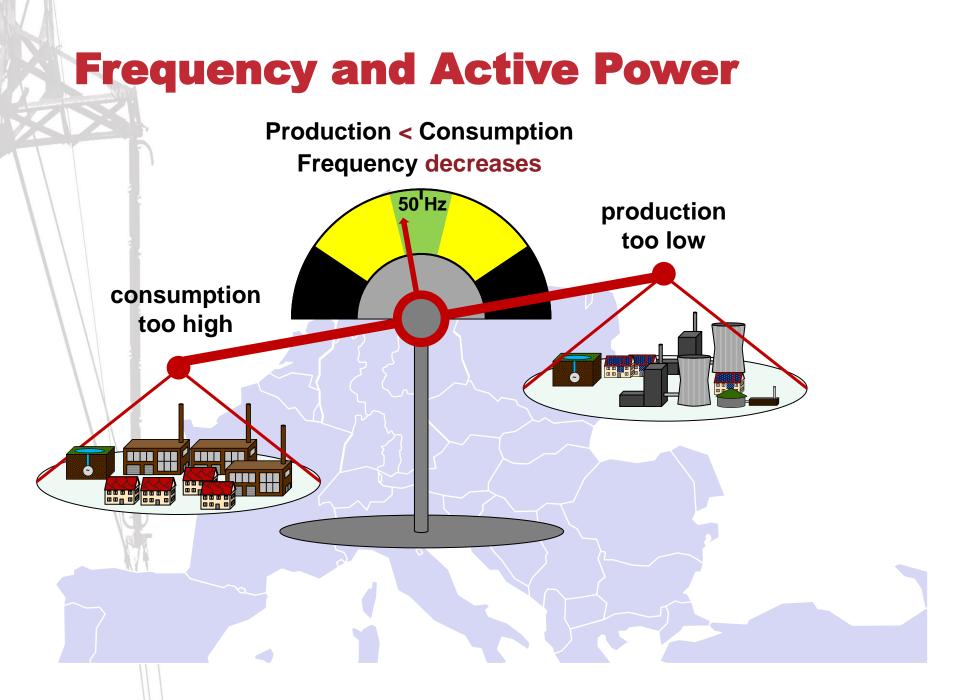


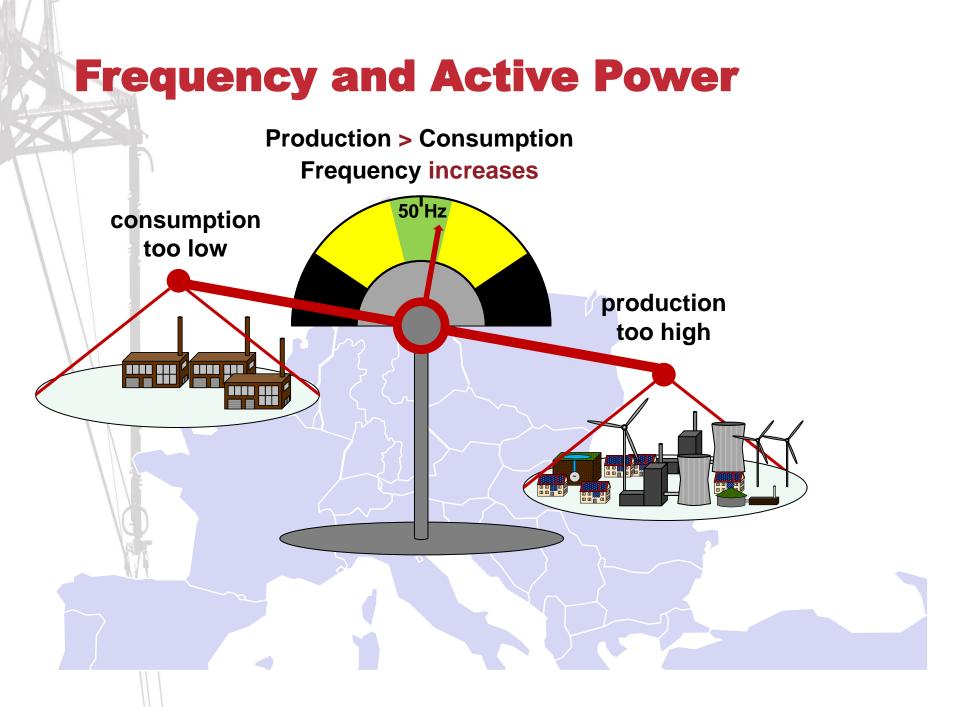
Pilot projects – EU context


8 EU pilot projects in total

- A. Imbalance Netting (IN)
- B. Replacement Reserve (RR)
- C. Manual Frequency Restoration (mFRR)
- D. Automatic Frequency Restoration (aFRR)
- E. Frequency Containment Reserve (FCR)

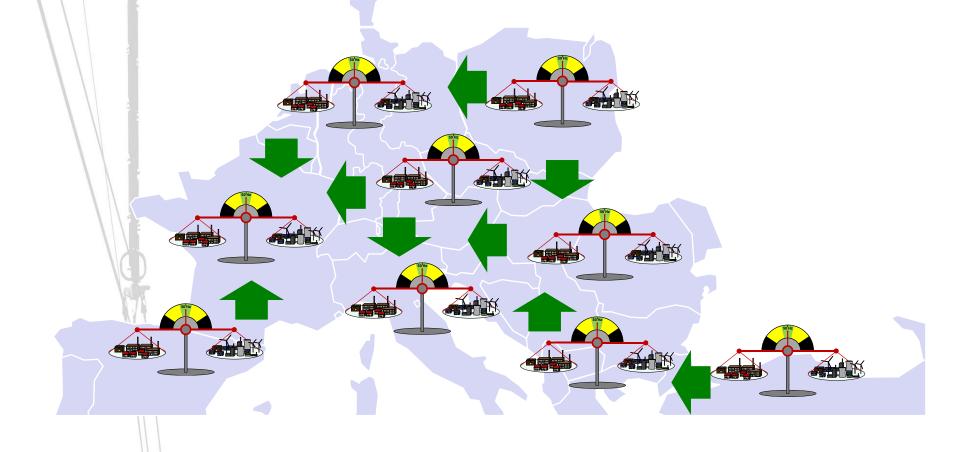



Imbalance Netting in IGCC

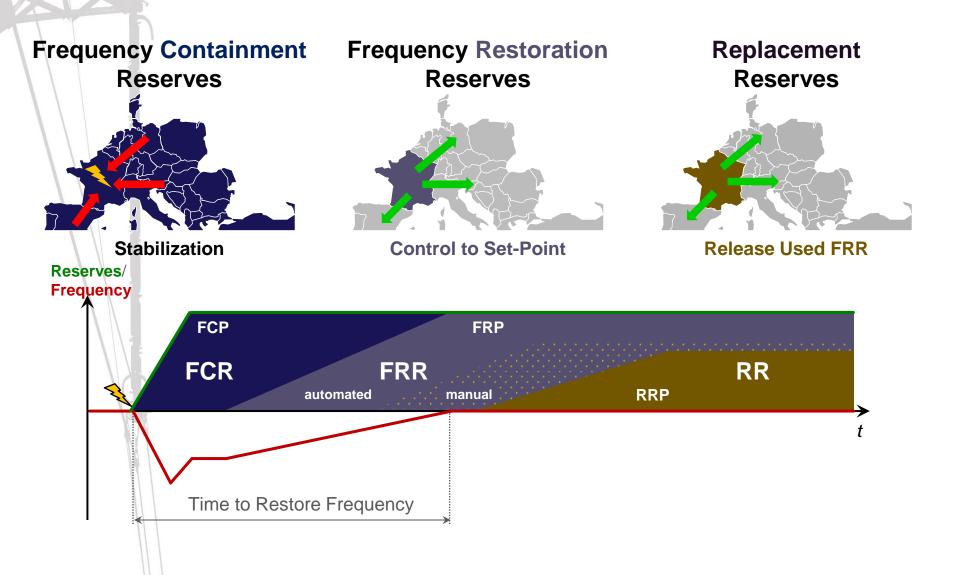

1. Introduction

2. IGCC - Technical Overview

3. Experience

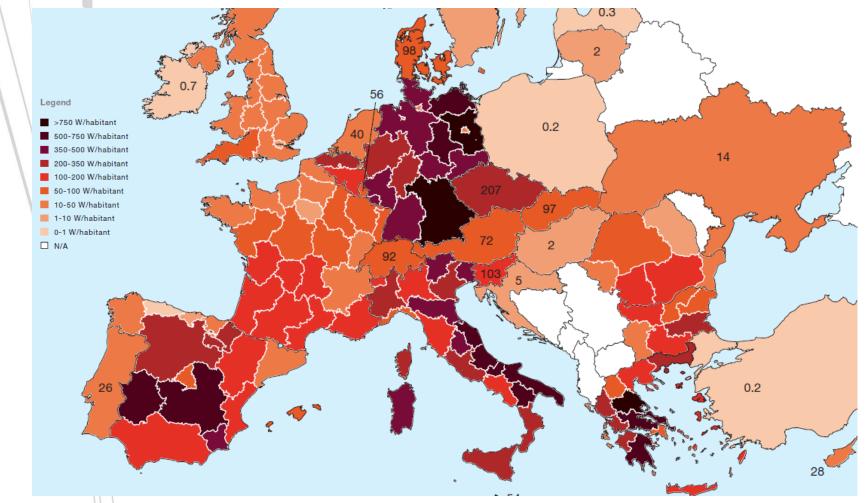


Imbalances and Flows

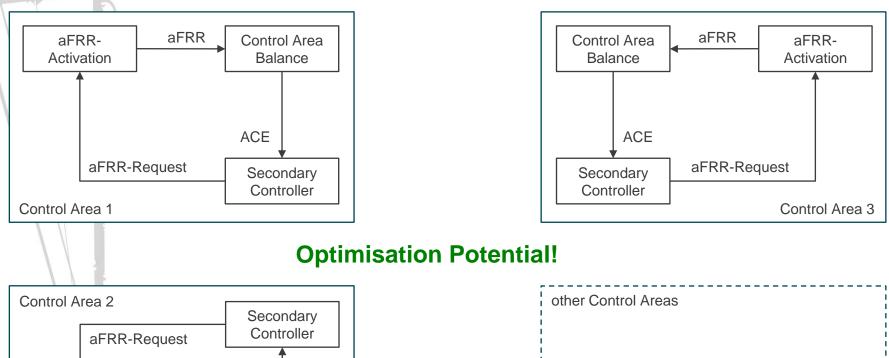

One frequency, but control of local imbalances is necessary ...

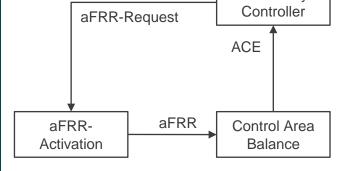
Imbalances and Flows

One frequency, but control of local imbalances is necessary in order to prevent uncontrolled flows



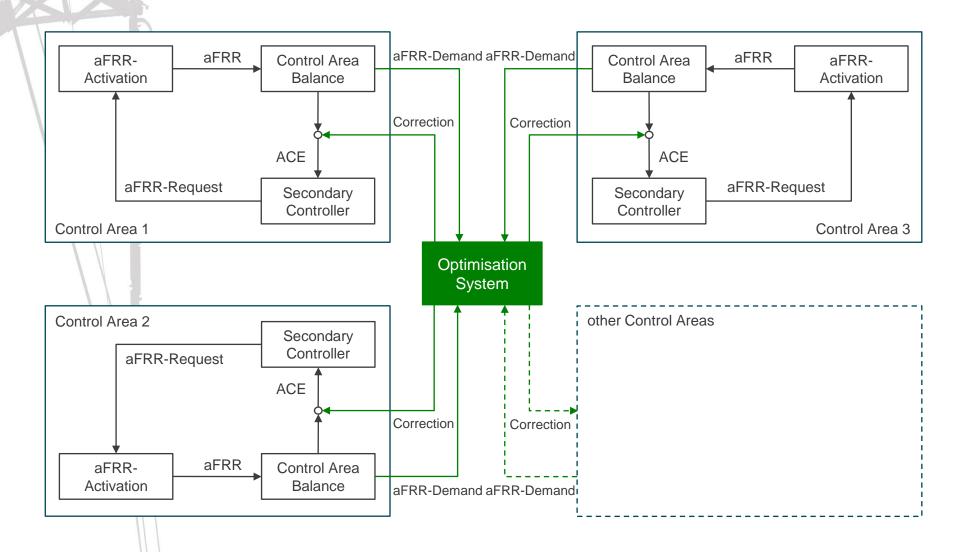
Load-Frequency-Control



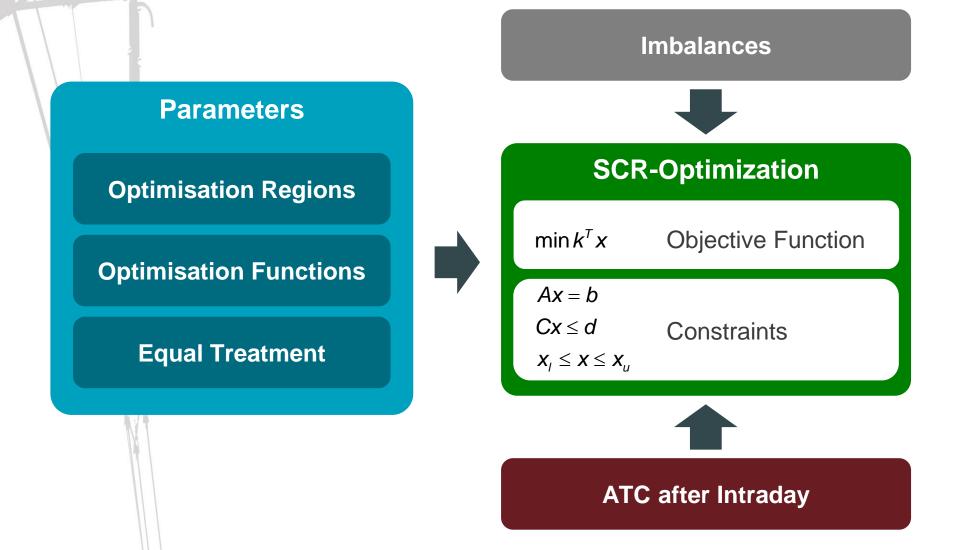

Need for Coordination - Example

Installed PV per Capita in 2013 (Source: EPIA)

Imbalance Netting

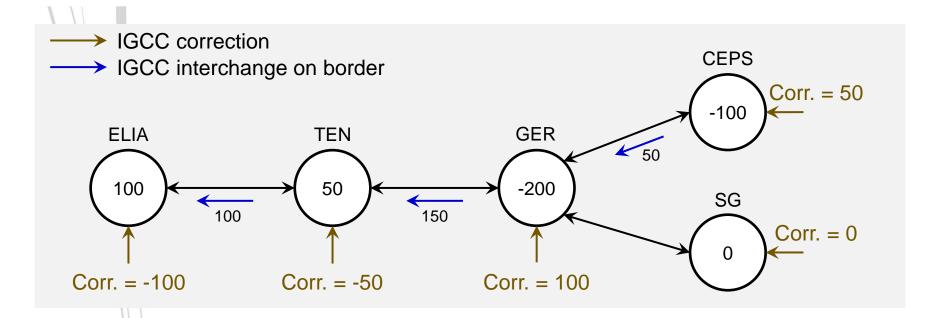


1. Introduction

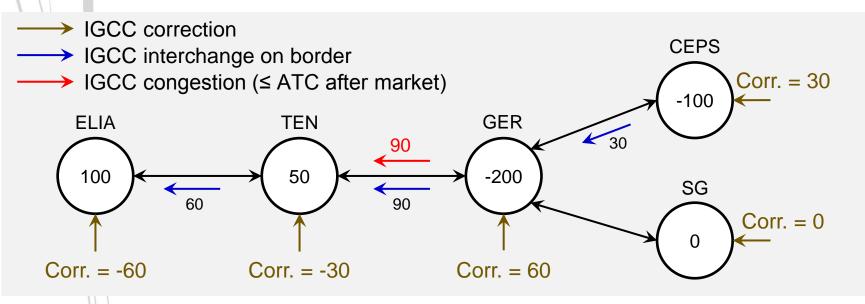

2. IGCC - Technical Overview

3. Experience

Imbalance Netting



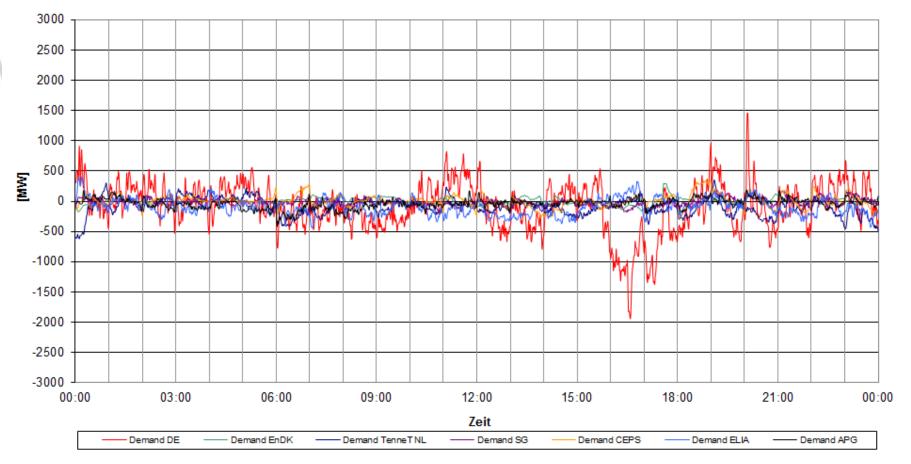
Algorithm Structure


IGCC: Pro-Rata Distribution of Netting Potential (Example 1)

Control Block	ELIA	TEN	GER	CEPS	SG
Imbalance (SCR demand) [MW]	100	50	-200	-100	0
Correction without congestions [MW]	-100	-50	100	50	0

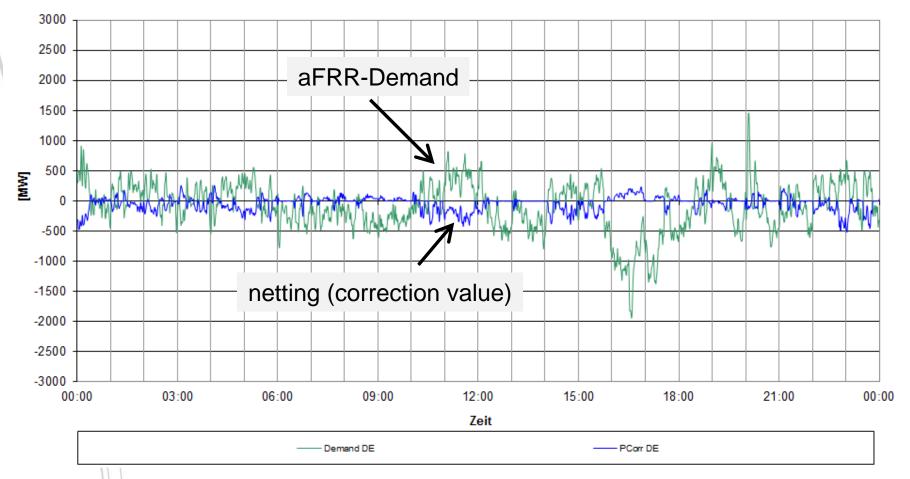
IGCC: Pro-Rata Distribution of Netting Potential (Example 2)

Control Block	ELIA	TEN	GER	CEPS	SG
Imbalance (SCR demand) [MW]	100	50	-200	-100	0
Correction without congestions [MW]	-100	-50	100	50	0
Correction with congestions [MW]	100	-100	0	0	0

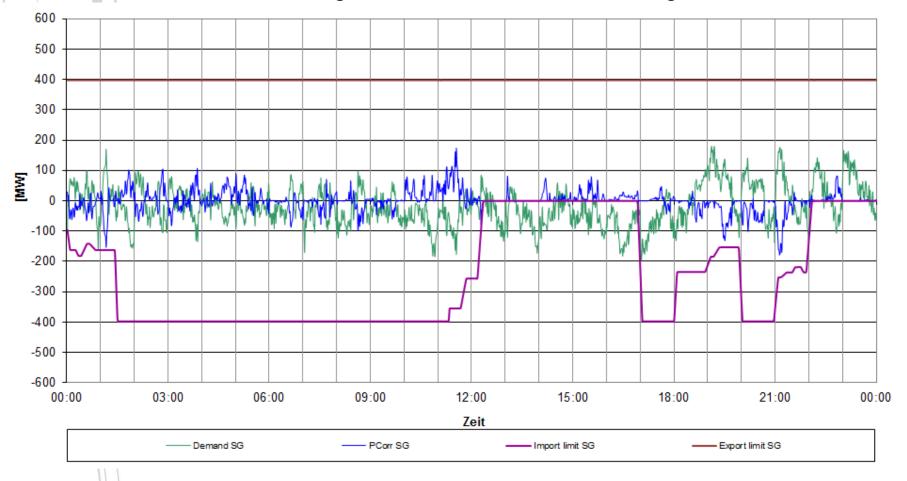

1. Introduction

2. IGCC - Technical Overview

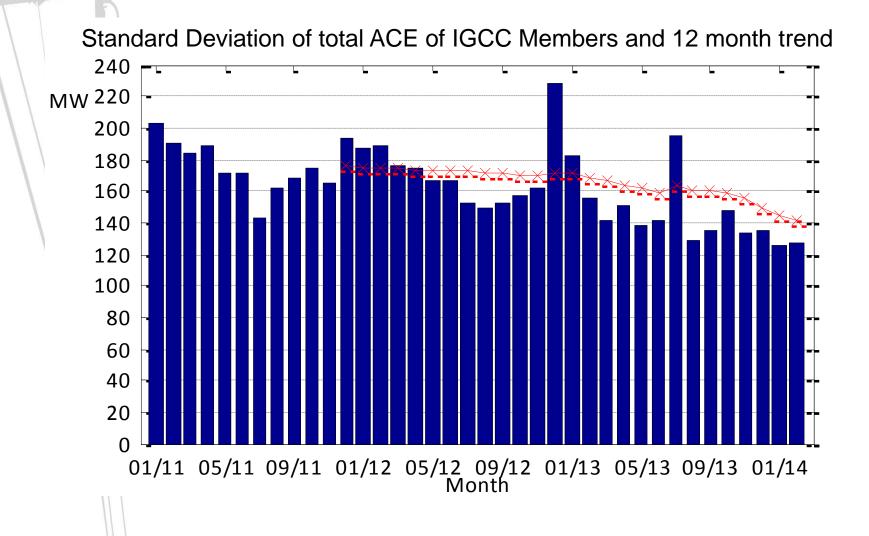
3. Experience


Operation Example (Random Pick)

aFRR-Demands of IGCC Members


Operation Example (Random Pick)

Germany: aFRR-Demand and Netting



Operation Example (Random Pick)

Swissgrid: aFRR-Demand and Netting

ACE Quality – Historical Development

Settlement

Opportunity Price as Input for Settlement in IGCC

 without IGCC
 with IGCC
 Opportunity Price =

 SCE_before IGCC [MWh]
 IGCC exchange
 Opportunity Value/IGCC Volume

 SCE price_before IGCC [MWh]
 SCE_after IGCC [MWh]
 [(SCE_before IGCC * SCE price_before IGCC) - (SCE_after IGCC * SCE price_before IGCC) - (SCE_after IGCC * SCE price_after IGCC * SCE pr

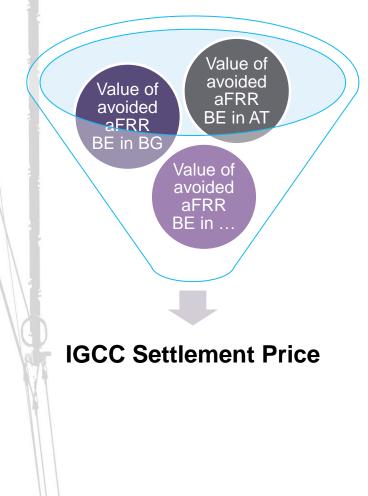
- IGCC Settlement Price (C_{IGCC}): Energy weighted ($E_{Imp,i}$ and $E_{Exp,i}$) average of the opportunity prices ($C_{Imp,i}$ and $C_{Exp,i}$)

 $\sum_{n=1}^{n}$

Single price for all IGCC exchanges

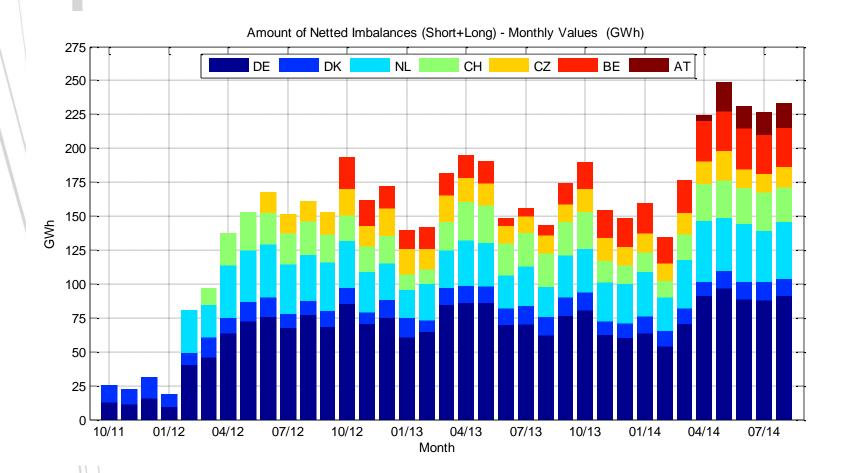
Calculation of IGCC Settlement Price

Value of Netted Imbalances

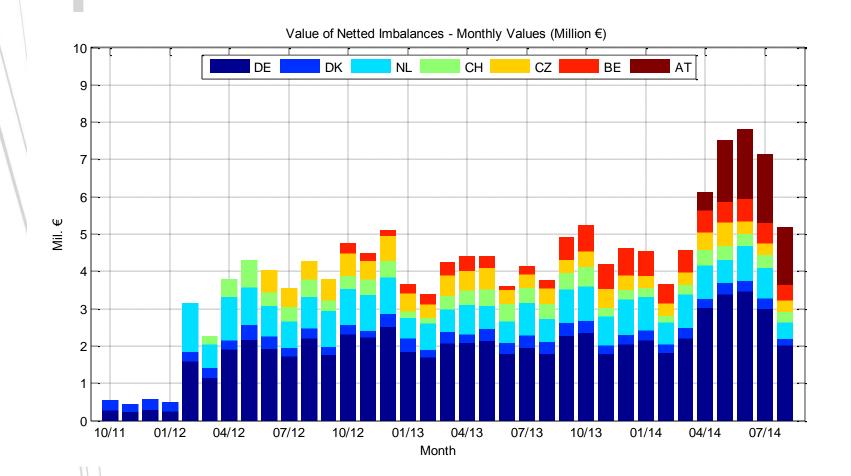

$$C_{\text{IGCC}} = \sum_{i=1}^{\infty} \left(C_{\text{Imp},i} E_{\text{Imp},i} + C_{\text{Exp},i} E_{\text{Exp},i} \right) / \sum_{i=0}^{\infty} \left(E_{\text{Imp},i} + E_{\text{Exp},i} \right)$$

 Value of avoided activations for a participant is driven by the spread between the opportunity price and the IGCC settlement price

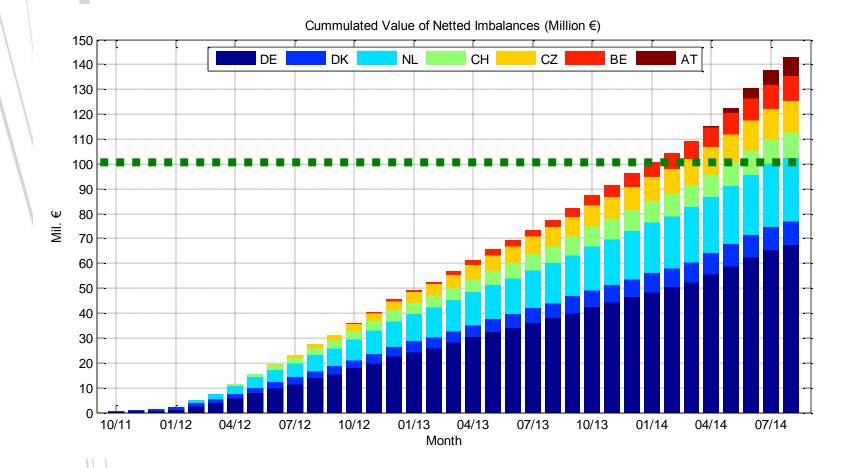
$$R_{\text{IGCC}} = \sum_{i=1}^{n} (C_{\text{Imp},i} - C_{\text{IGCC}}) \cdot E_{\text{Imp},i} + \sum_{i=1}^{n} (C_{\text{IGCC}} - C_{\text{Exp},i}) \cdot E_{\text{Exp},i}$$

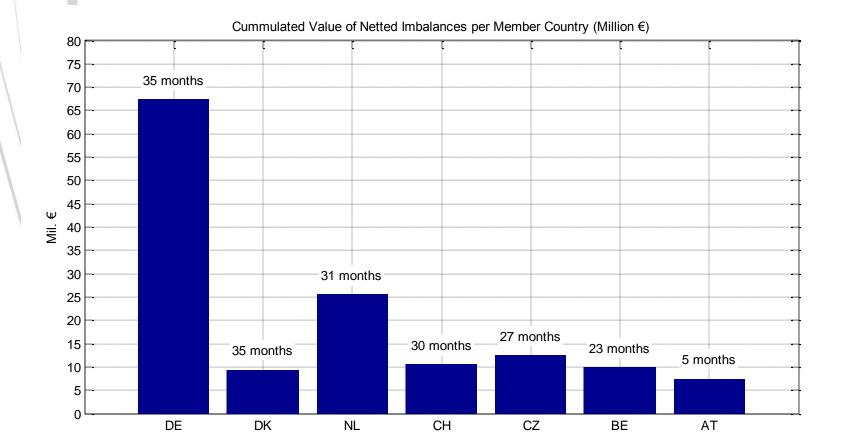

 $\sqrt{\frac{n}{\sum}}$

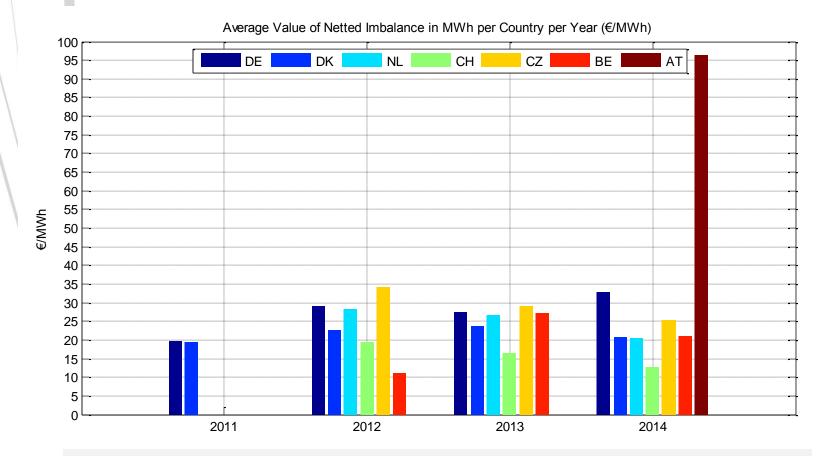
Compliance with NC EB Draft



- Calculated for a 15min settlement interval
- ✓ Same for export and import
- ✓ Same for every participant
- Integral of power exchanges matched before
- ✓ Based on avoided aFRR BE costs


Netted Amounts


Monetary Value of Netting

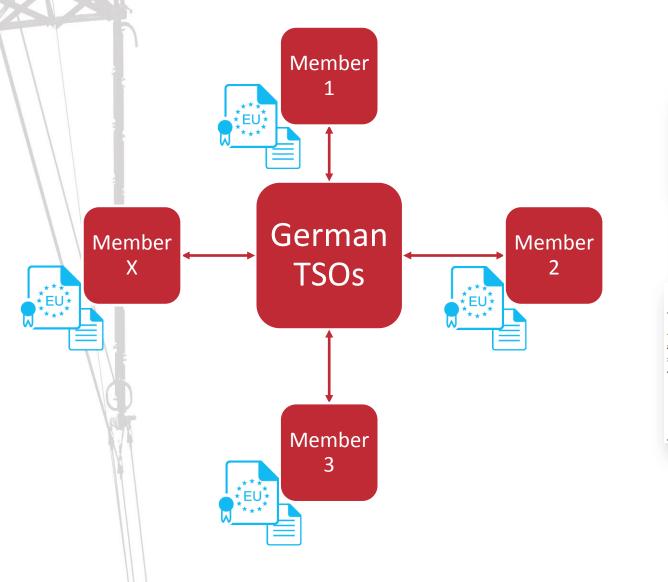

Cumulated Monetary Value

Cumulated Monetary Value per Member Country

Average Monetary Value of Netting per Member Country

Differences are driven by different aFRR energy prices!

IGCC - Summary

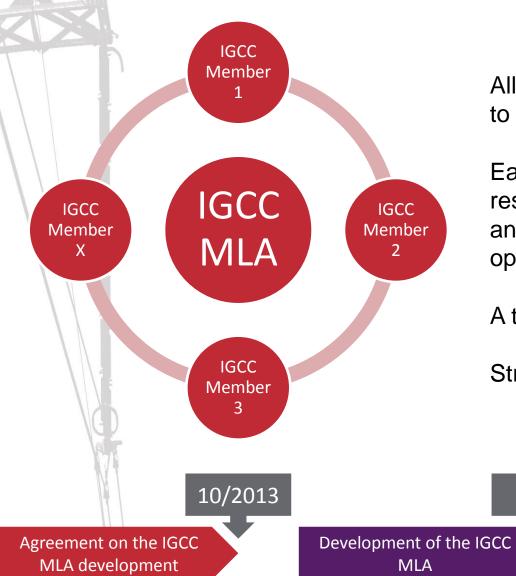

Robust technical framework

✓ Increase of ACE quality

✓ Current monetary value of netted imbalances > €140 million

Governance structure

Status quo – Bilateral agreements


Contract on the integration of ČEPS, a.s. in						
International Grid Control Cooperation ("IGCC")						
("Contract")						
Hertz Transmission GmbH ("50HzT")						
henstraße 3a						
435 Berlin						
many						
aprion GmbH ("Amprion")						
einlanddamm 24						
139 Dortmund						
many						
InsnetBW GmbH ("TNG")						
egsbergstraße 32						
174 Stuttgart						

Appendix 1 - Process control realization of the IGCC

Table of Contents

	Tak	ole of	f Contents		
	1	INTRO	DUCTION		2
		MODUL	LE 1 escription		2
		2.2 Ft	Indamental principle of Module 1		3
		2.3 SC	CP Optimization System data exchange		5
	3		Appendix 2 - Operational guideline of the IGCC	1	6
	1	Tabl	e of Contents		
		1 DI	ESCRIPTION OF MODULE 1	2	
			ERMS AND DEFINITIONS FOR OPERATIONAL GUIDELINE	3	
			2 Exchange limits	4	
		3 PI	ROPOSAL FOR THE VISUALISATION	6	
			OMMUNICATION IN CASE OF REDUCTION OR SUSPENSION F PARTICIPATION OF AN IGCC PARTICIPANT	6	
		0	F PARTICIPATION OF AN IGCC PARTICIPANT	•	
Tal			ntents Ve of This document		
2	INTI	RODU	CTION		
3	DET	ERMI	NING THE ENERGY QUANTITIES FOR MODULE 1		
4			ING OF THE IGCC ENERGY QUANTITIES basis for the accounting of IGCC		
			lation of the Opportunity Price		
	4.3	Орро	rtunity Price determination for the German TSOs		
			rtunity Price determination for the Acceding TSO		
		Gene	Sideletter		
		Acco Over			
4.9	IGC	C DAT	Contract on the integration of ČEPS, a.s. into		
			International Grid Control Cooperation ("IGCC")		ľ
			("Contract")		
			50Hertz Transmission GmbH ("50HzT")		
			Eichenstraße 3a 12435 Berlin		
			12435 Bernin Germany		
			Amprion GmbH ("Amprion")		
			Rheinlanddamm 24 44139 Dortmund		
			Germany		
			TransnetBW GmbH ("TNG")		
			Kriegsbergstraße 32		
			70174 Stuttgart Germany		
			TenneT TSO GmbH ("TTG")		

Near future – The IGCC MLA

All IGCC Members will become parties to one agreement

Each IGCC Member is solely responsible for operation of its system and for correct determination of IGCC operation values

Signature of the IGCC MLA

H1/2015

A two level working structure

Strengthen decision making

2014

The IGCC MLA – Working structure

IGCC Steering Committee

- The decision making body
- Superior body to the IGCC EG
- Meets at least once per year

IGCC Expert Group

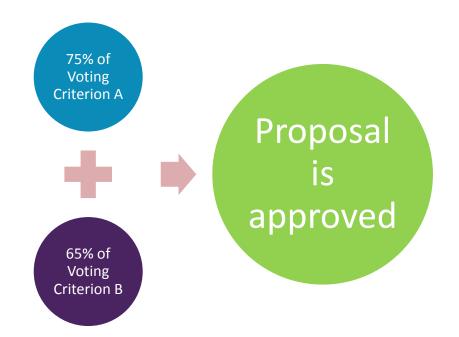
- The expert body
- Proposes and evaluates concepts
- Meets regularly

IGCC Expert Group Convener

- Organization of the IGCC EG work
- Single point of contact between IGCC SC and IGCC EG

work

Decision makir


Expert level

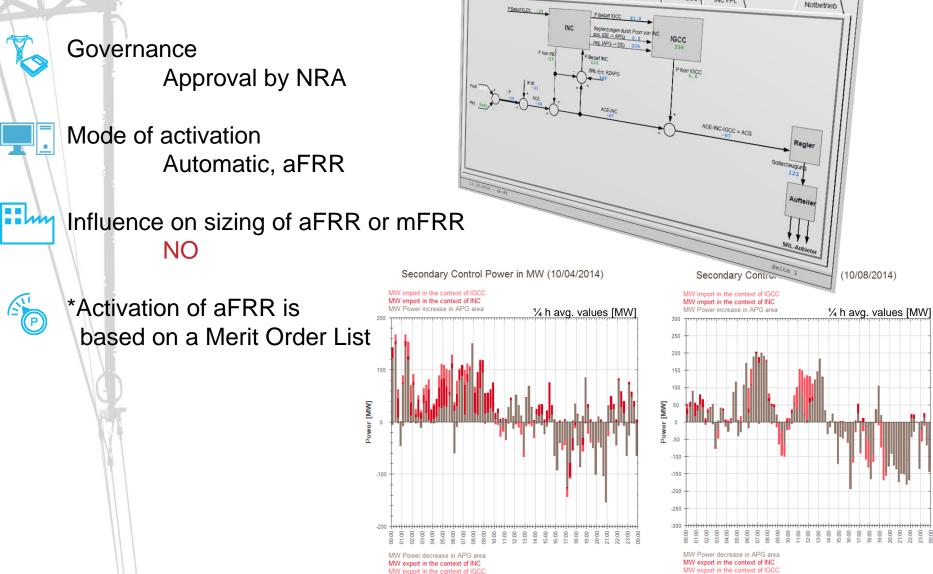
Facilitating Party

Supports work of the IGCC

The IGCC MLA – Decision making

The IGCC Members strive for unanimous decision in a first place. Voting procedure is understood as a last resort measure...

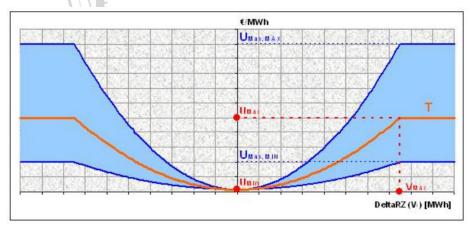
Implementation in national markets, part I.


Many countries but one "IGCC rules"

Austria

Riegler Markus - Markus.Riegler@apg.at

Interaction with other Balancing Services


Incorporation into the national imbalance settlement system

Type of balancing energy delivery The Cooperations (INC & IGCC) are considered equally to BSPs, providing aFRR BE to the Austrian power system.

Energy price in national imbalance settlement system The exchanged energy is valuated with the settlement price to ensure a 100 % cost related pricing towards the BRPs.

Netting of energy in national imbalance settlement system The exchanged energy and related cots are treated as a part of aFRR activation.

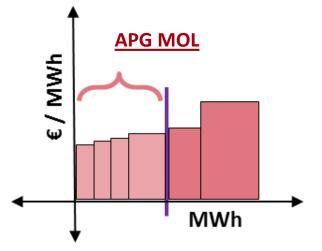
The determination of the imbalance prices is governed by the AB-BKO*, agreed upon between the Austrian clearing authority (APCS) and the NRA (E-Control). (No English version available)

It is based on a curve function, based on the costs for reserves, activations and exchanges, as well the total imbalance of the LFC-Area.

*General conditions of the Austrian Clearing Authority

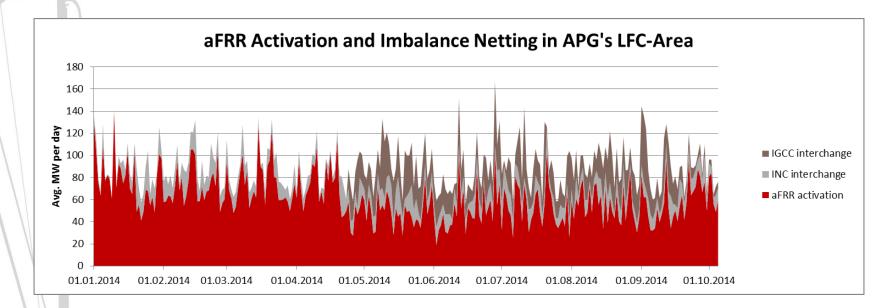
The Austrian IGCC opportunity price(s)

The Austrian Opportunity Price for IGCC is equal to the average price for aFRR activation in the respective time frame ($\frac{1}{4}$ h).


As the prices for aFRR activation are determined on a pay as bid basis, based on a Merit Order List, the determination is as shown below.

$$C_{i,IMP} = \frac{M_{aFRR_pos,i}}{aFRR_{pos,i}}$$

$$C_{i,EXP} = \frac{M_{aFRR_neg,i}}{aFRR_{neg,i}}$$


Variable	DeaFRRiption	Unit	Sign
aFRR _{pos, i}	Amount of activated positive aFRR Energy for the IGCC settlement period _i .	[MWh]	Always positive.
aFRR _{neg, i}	Amount of activated negative aFRR Energy for the IGCC settlement period _i .	[MWh]	Always positive.
$C_{i,Imp}$	Resulting IGCC Opportunity Price of APG for IGCC import for the IGCC settlement period _i .	[€/MWh]	Positive values means APG pays for activation of positive aFRR Energy. Negative value means APG is paid for activation of positive aFRR Energy.
$C_{i,Exp}$	Resulting IGCC Opportunity Price of APG for IGCC export for the IGCC settlement period _i .	[€/MWh]	Positive value means APG is paid for activation of negative aFRR Energy. Negative value means APG pays for activation of negative aFRR Energy.
M _{aFRR_pos, i}	Total costs for positive aFRR Energy deliveries of APG for the IGCC settlement period _{i.}	[€]	Positive value means APG has costs. Negative value means APG receives payment.
M _{aFRR_neg, i}	Total costs for negative aFRR Energy deliveries of APG for the IGCC settlement period _{i.}	[€]	Positive value means APG receives payment. Negative value means APG has costs.

The Austrian IGCC opportunity price(s)

Activated aFRR_+ in the ¼ h:	+ 100	MWh
Costs for activated aFRR in the ¼ h:	12.000	EUR
= Opportunity Price for IGCC Import:	120	EUR/MWh

Share on balance of the power system

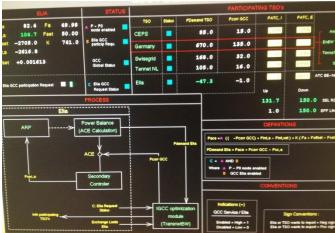
	aFRR acitation +	INC Import	IGCC Import		aFRR activation -	INC Export	IGCC Export
2014_01	84%	16%	0%	2014_01	89%	11%	0%
2014_02	74%	26%	0%	2014_02	84%	16%	0%
2014_03	74%	26%	0%	2014_03	91%	9%	0%
2014_04	68%	27%	5%	2014_04	86%	6%	8%
2014_05	52%	23%	26%	2014_05	55%	10%	35%
2014_06	50%	27%	23%	2014_06	65%	7%	28%
2014_07	59%	24%	17%	2014_07	60%	3%	37%
2014_08	46%	24%	30%	2014_08	70%	6%	24%
2014_09	65%	19%	16%	2014_09	63%	11%	26%

Belgium

Sophie Van Caloen - Sophie.VanCaloen@elia.be

Interaction with other Balancing Services

Governance Balancing Rules


Mode of activation Automatic, preceeding aFRR

Him

Influence on sizing of aFRR or mFRR

*Activation of aFRR is based on a prorata system

		ONTROL E	
1	P - Po +	K . (F - Fo +	0)
		28.8 M	W
300	-150	0	150 30
	n Frequen		
P -	P0 Enable	d 📘	
	4	ACE PROFIL	E
ACE 1	SELEC	T CONF D	IFF INV/NRF
HOL I	-	VT BelNed 1	-
	10 100 100 10	Values	Convention
TSO	Status		Convention
Tennet		0.0	t-3 Import
Elia		0.0	
		GCC	
		t reg	
Elia	GCC par		
		t status	-
Elia	request	t status	:
Elia GCC	request		PCorr GCC
Elia GCC	request feedbac	t status k status	PCorr GCC -1.0
Elia GCC	request	t status k status PDemond TSO	

Incorporation into the national imbalance settlement system

Type of balancing energy delivery

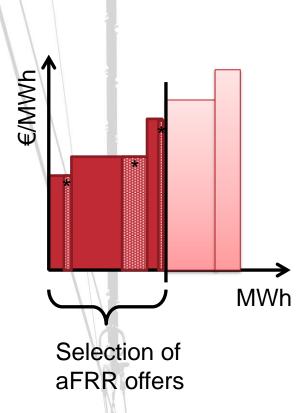
The energy imported or exported between TSOs is part of the NRV (net regulation volume)

Energy price in national imbalance settlement system
The price will be equal to aFRR price
Import will be valued at the weighted average price of positive aFRR
Export will be valued at the weighted average price of negative aFRR

₹ ₹ Netting of energy in national imbalance settlement system

IGCO balancing energy is netted similarly to aFRR

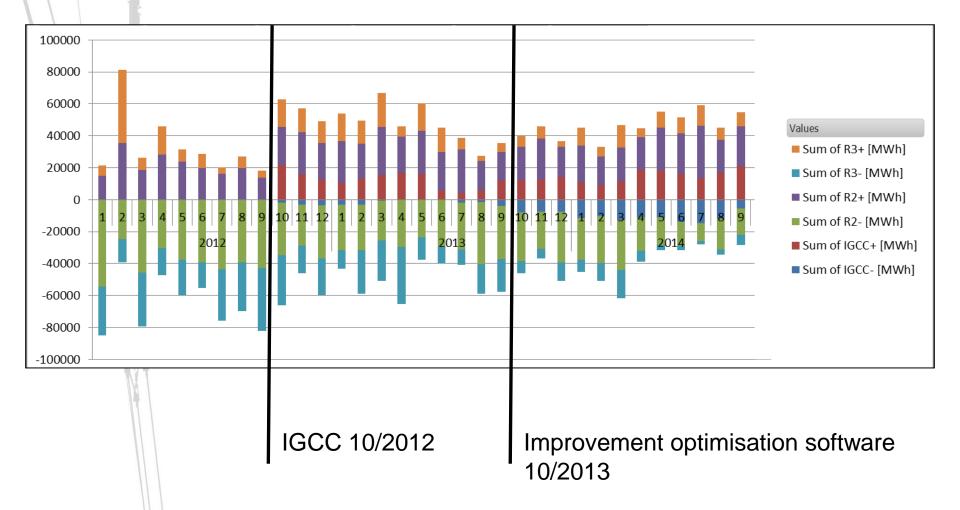
The Country IGCC opportunity price(s)


#1 Determination of aFRR price after selection of aFRR offers for each quarter-hour ~ Weighted Average of the price of each offer (prorata system)

#2 The opportunity price for IGCC import/export is the aFRR price for aFRR positive/negative activated energy

$$C_{i;Imp} = \frac{\sum_{k}^{all \ suppliers} \left[P_{pos;i;k} * aFRR_{pos;i;k} \right]}{\sum_{k=1}^{all \ suppliers} \left[aFRR_{pos;i;k} \right]}$$
$$C_{i;Exp} = \frac{\sum_{k=1}^{all \ suppliers} \left[P_{neg;i;k} * aFRR_{neg;i;k} \right]}{\sum_{k}^{all \ suppliers} \left[aFRR_{neg;i;k} \right]}$$

*Due to 15min imbalance settlement period is the IGCC opportunity price calculated for each 15min IGCC settlement intervals


The Country IGCC opportunity price(s)

Example for IGCC Opportunity Price for import									
	aFRR Energy amount in MWh	Price in €/MWh	Costs in €						
Bid 1	30	40	1200						
Bid 2	100	60	6000						
Bid 3	20	70	1400						
IGCC Opportunity Price €/MWh	<u>30*40+100</u> 30+10		57,33						

* Pro-rata activation of aFRR

Share on balance of the power system

Publications

Current NRV (IGCC included)

Situation at 14/10/2014 15:11 Quarter 15:00 -> 15:15

NRV = -56,2 MW NRV Cumulated = -120,8 MW

-300

System Imbalance = -26,8 MW System Imbalance Cumulated = 86,9 MW

Current NRV -400 -300 -200 -100 0 100 200 300 400

Current System Imbalance

100

200

300

400

-200 -100 0

Used regulation capacity

-400

		Upward re	gulation V	/olume				Downward regulation Volume								
Quarter	NRV	GUV	IGCC+	R2+	Bids+	R3+	R3DP+	GDV	IGCC-	R2-	Bids-					
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)		Decremer	tal Prices		
00:00 > 00:15	8,201	43,870		43,870				35,669	5,989	29,680		R3+	MDP	IGCC-	R2-	Bids-
00:15 > 00:30	24,410	41,560		41,560				17,150	0,367	16,783		(€/MWh)	(€/MWh)	(C/MWh)	(€/MWh)	(€/MWh)
00:30 > 00:45	-103,276							103,276	0,278	102,998			4,28	4,28	4,28)
00:45 > 01:00	-125,398							125,398		125,398			4,28	4,28	4,28)
01:00 > 01:15	-9,378	31,377		31,377				40,755	0,044	40,711			4,28	4,28	4,28	1
01:15 > 01:30	-98,088	0,341		0,341				98,429	13,233	85,196			4,28		4,28	1
01:30 > 01:45	-125,320							125,320	0,078	125,242			4,48	4,48	4,48	1
01:45 > 02:00	-85,897							85,897	0,200	85,697			4,57	4,57	4,57	-
					01:30 > (01:45 -1	25,320						4,74	4,74	4,74	1
					01:45 > (02:00	85,897						4,74	4,74	4,74	

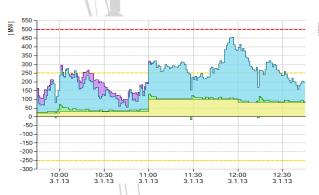
The Czech Republic

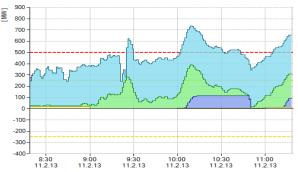
Tomáš Bednář – bednar@ceps.cz

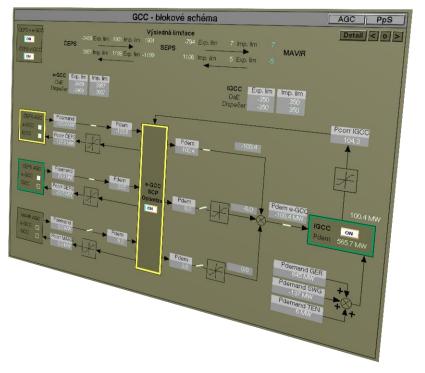
Interaction with other Balancing Services

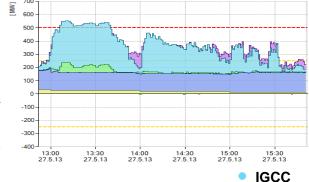
Governance

The Grid Code, part II. 3.5.3


Mode of activation Automatic, preceeding aFRR


Influence on sizing of aFRR or mFRR No




Ilm

*Activation of aFRR is based on a prorata system

Incorporation into the national imbalance settlement system

Type of balancing energy delivery CEPS acts as another BSP providing aFRR BE to the Czech power system

3.5.3 Electricity operative supplies from/to abroad, in context of co-operation on TSO level [EregZGCC]

It concerns a mutual exchange of electricity among co-operating TSOs, used as the control (regulating) energy maintaining the power balance in context of the secondary control. A control power supply (positive or negative) is effected operatively, on a basis of an evaluation of needs of the system status, by an automatically interconnected control system. In case ČEPS make use of this service, the electricity supplied to the CR ES, or received from the CR ES, is considered the control energy supplied by ČEPS. For settlement purposes, this control energy is provided by ČEPS; additionally, ČEPS sets the price of such electricity, in compliance with Price Decision of Energy Regulatory Office.

Energy price in national imbalance settlement system

Set in NRA's price decision, equal to prices of aFRR BE

*IGCC balancing energy is netted similarly to aFRR

(11) Fixed prices for regulating [balancing] energy supply and fixed price for imbalance clearing:

(11.1) The fixed price for positive balancing energy supplied by units that had secondary control activated in the respective trading hour, and/or for ad hoc supply of positive balancing energy as part of co-operation in secondary control at the level of transmission system operators, shall be, under the public notice laying down the Electricity Market Rules¹¹),

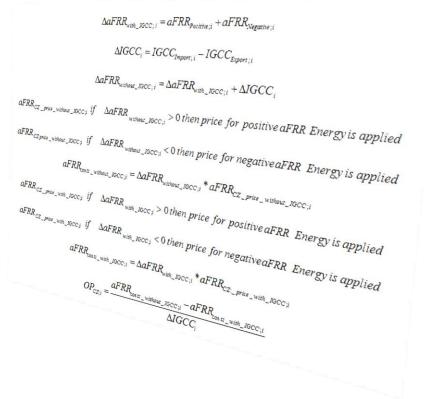
CZK 2,350/MWh.

The provider of balancing energy shall bill this price to the market operator.

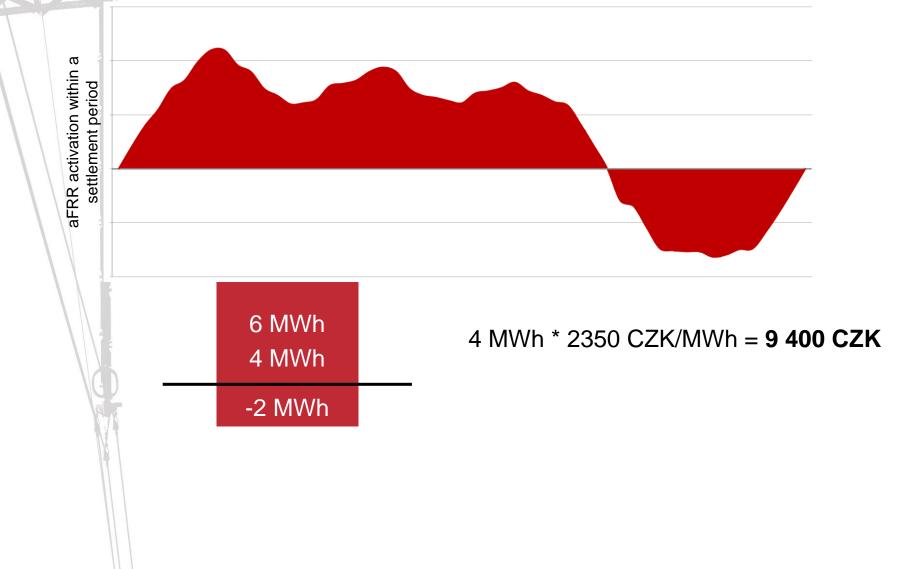
(11.2) The fixed price for negative balancing energy supplied by units that had secondary control activated in the respective trading hour, and/or for ad hoc supply of positive balancing energy as part of co-operation in secondary control at the level of transmission system operators, shall be, under the public notice laying down the Electricity Market Rules 4),

CZK 1/MWh;

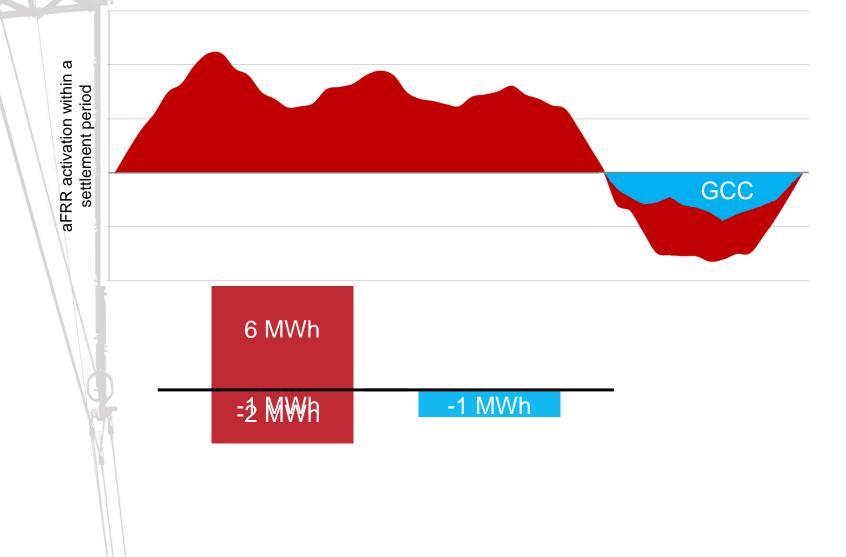
The provider of the balancing energy shall bill this price to the market operator.

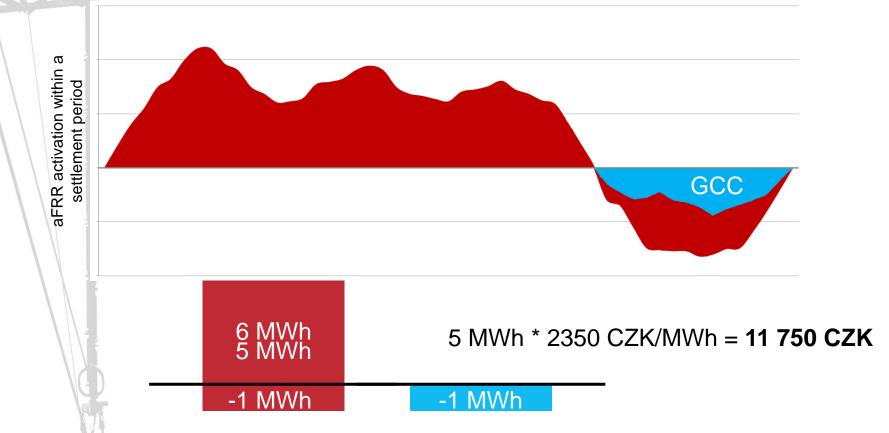

The Czech IGCC opportunity price(s)

#1 Determination of costs for aFRR BE without IGCC ~ Sum of all payments to aFRR suppliers if no IGCC exchange happens (derived settlement value)

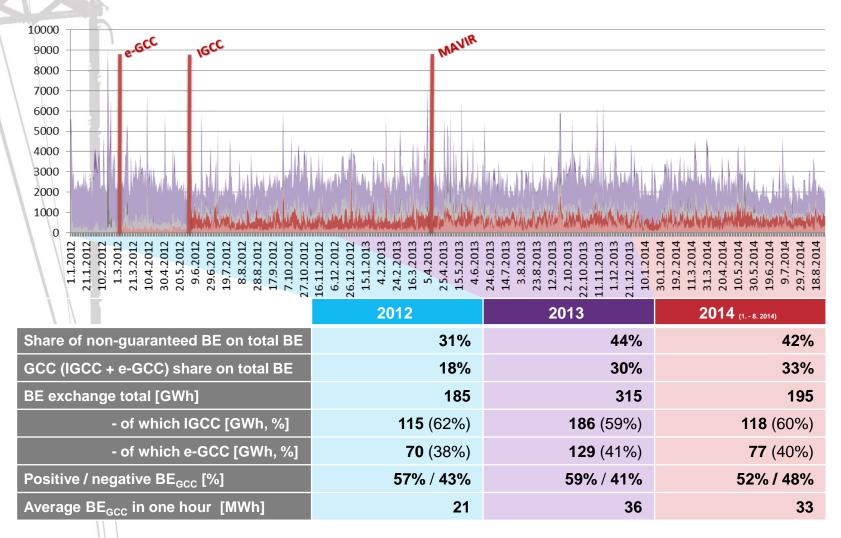

#2 Determination of costs for aFRR BE with IGCC ~ Sum of all payments to aFRR suppliers (real settlement value)

#3 The difference between costs weighted by netted IGCC exchange


*Due to 60min imbalance settlement period is the IGCC opportunity price same for four consequtive 15min IGCC settlement intervals


The Czech IGCC opportunity price – step # 1

The Czech IGCC opportunity price – step # 2



The Czech IGCC opportunity price - step # 2

But it was 9400 CZK without IGCC -> The difference 2350 CZK is weighted by IGCC exchange. CEPS' IGCC opportunity price is -2350 CZK/ MWh with minus indicating increased cost due to increased payment to aFRR suppliers.

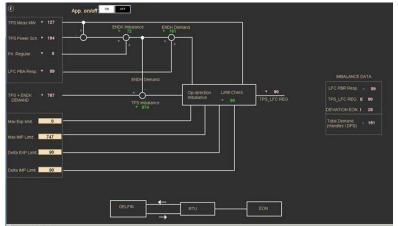
Share on balance of the power system

Implementation in national markets, part II.

Denmark

Peter Bruhn – pbu@energinet.dk

Interaction with other Balancing Services

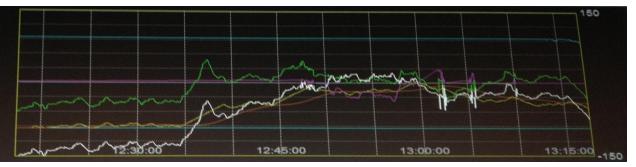


Governance

Danish Energy Regulatory Authority

Mode of activation Automatic, preceeding aFRR

Influence on sizing of aFRR or mFRR No



Im

Activation of aFRR is based on a prorata system

MAX (LIMIT_UP): 87 MIN (LIMIT_DOWN): -94 SLUTVAERDI (REGULATION): -52 RESPONC:E(PBR): -42 EON UDLIGNING: 0 UBALANCE TYSKLAND (ACE) -: 32 OPS PLAN AFVIGELSE: -74

Incorporation into the national imbalance settlement system

Type of balancing energy delivery IGCC acts as another BSP providing aFRR BE to/from the Danish power system

Energy price in national imbalance settlement system

Set in Energinet.dk's price decision, equal to prices of aFRR BE

1.2.3.1 Payment for energy

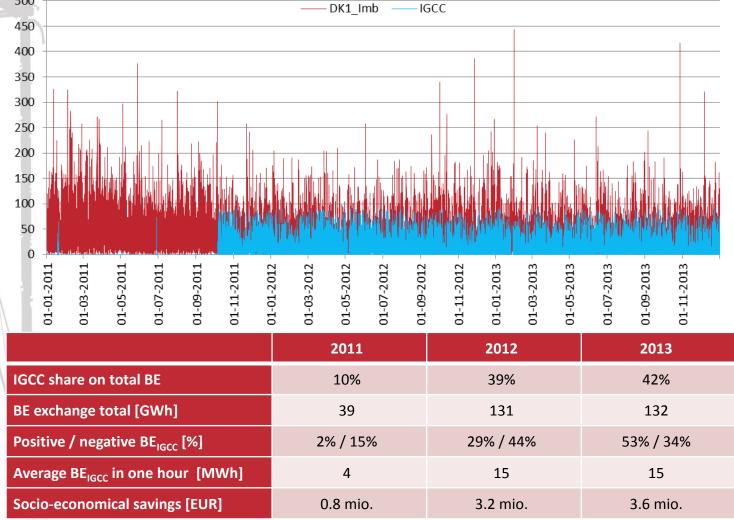
Delivery of energy from secondary up reserve is settled per MWh with the DK1-NordPoolSpot Price + DKK 100 / MWh or at least the price for tertiary up reserve energy.

The delivery of energy from from secondary down reserve is settled per MWh with the Danish DK1-NordPoolSpot Price – DKK 100 / MWh or maximum the price for activation of tertiary down reserve energy.

The delivery of energy is settled based on the log in Energinet.dk's SCADA-system as an integrated value of expected activaed power per 15 minutes.

The Danish IGCC opportunity price(s)

The Danish IGCC opportunity price is equal to the Danish energy price for aFRR BE in DK1


Example for IGCC Opportunity Price for import							
Price for positive mFRR energy	244.70 DKK/MWh						
Nord Pool Spot DK1 Price	208.88 DKK/MWh						
Maximum	Max [244.70 ; 208.88 + 100 DKK]						
Danish IGCC Opportunity Price	308.88 DKK/MWh						

*Due to 60min imbalance settlement period the IGCC opportunity price is the same for four consequtive 15min IGCC settlement intervals

Price for negative mFRR energy	190.58 DKK/MWh						
Nord Pool Spot DK1 Price	208.88 DKK/MWh						
Minimum	Min [190.58; 208.88 - 100 DKK]						
Danish IGCC Opportunity Price	108.88 DKK/MWh						

Example for IGCC Opportunity Price for export

Share on balance of the power system

Interaction with other Balancing Services

Governance

Mode of activation

Balancing rules, approval by NRA

Automatic, preceeding aFRR

Ţţ

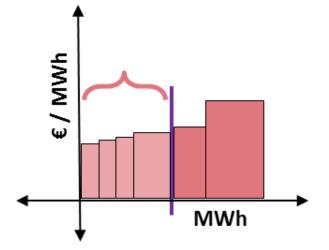
IIm

Influence on sizing of aFRR or mFRR No

Activation of aFRR is based on a Merit Order List

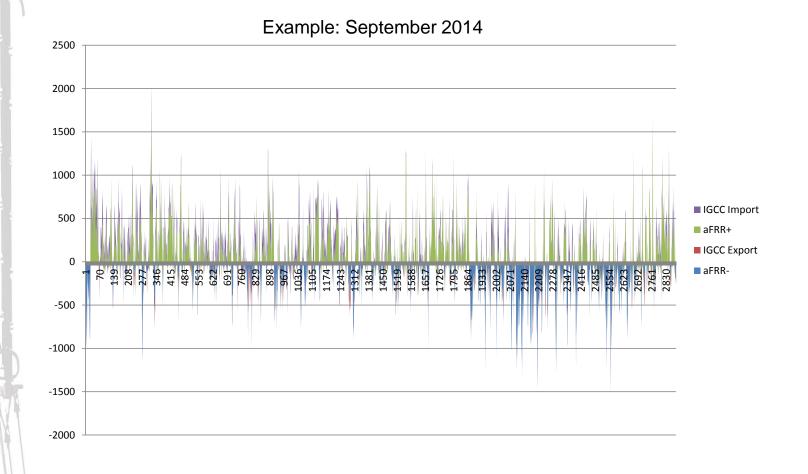
	Anzeige Ansicht Ueberlagenng Werte												
	TRĀNSNET BW		SRL Optimierung										
	NRV	Planung Übe	rsicht	Handelsfluss	– Tab.	Last	fluss – Tabelle	Profilfluss	-Tabelle				
I	PTDF-Betrieb	MOL-Be	MOL-Betrieb Handelsfluss			Las	tfluss – Karte	Engpassgr	enzen IG				
I	NRV neu aktiv												
I	Status NRV	akti	v	DE	ΤN	G	TenneT DE	50HzT	Amprion	TenneT NL	swissgrid	С	
	Teilnahmestatus												
	Bedarf		[NW]	1060	4	2	428	288	302	473	-74		
	KIWA 1		[MW]	-90	2	14	-397	-38	131	-39	74	- C	
	KIWA 2		[MW]			0						¢	
	zu aktivierende MC	DL	[MW]	985	2	56	40	256	433	0	0	(
	SRL-Sollwert		[MW]		2	59							
	SRL-Istwert		[MW]	1002	2	55	46	255	446				
	Reglerfehler (ACE)		[MW]	94	-	11							
	SRL-Regelbandgrenz	e positiv	[MW]	2091	8	61	132	320	778				
	SRL-Regelbandgrenz	e negativ	[MW]	-2043			-231	-425	-761				
	MRL-Einsatz für RZ a	iktuell	[MW]	0)	0	0	0				
	MRL-Einsatz für RZ g	peplant	[MW])							
	MRL-Einsatz in RZ ak	tuell	EMW3)							
	MRL-Einsatz in RZ ge		[WW]			ט							
	Fpl-Sollaustausch akt	tuell	[NW]	-3360	34	4	1089	-2559	-2234				
	Fp1-So11austausch gep		[NW]	[NW] -4345		6	1099	-2691	-2658				
	Grenzen geändert?	Grenzen geåndert?				Vein	Nein	Nein	Nein				
	Teilnahmeschalter (ÜNB					TenneTDE	50Hz- Т	Amprion	TenneT NL	swissgrid	∏c	
	Teilnahmeschalter	TNG			Er	вW	EnBW	EnBW	EnBW	EnBW	EnBW	E	

Incorporation into the national imbalance settlement system


₹ Type of balancing energy delivery The cooperation is considered equally to BSPs, providing aFRR BE to the German TSOs.

Energy price in national imbalance settlement system The exchanged energy is valuated with the settlement price to ensure a 100 % cost related pricing towards the BRPs.

Netting of energy in national imbalance settlement system The exchanged energy and related cots are treated as a part of aFRR activation.


The determination of the imbalance price is typically equal to the total price of balancing energy (under certain conditions the price is capped, moreover there are surcharges/deductions in case of high imbalances, further information about German load-frequency-control concepts and market is available at www.regelleistung.net)

German Opportunity Price

Activated aFRR_+ in the ¼ h:	+ 100	MWh
Costs for activated aFRR in the ¼ h:	12.000	EUR
= Opportunity Price for IGCC Import:	120	EUR/MWh

Share on balance of the power system

The Netherlands

Fabian Heus - Fabian.Heus@tennet.eu

Interaction with other Balancing Services

Governance

System Code article 2.2.5

Mode of "activation"

Automatic adjustment of ACE

Influence on sizing of aFRR or mFRR

None

Incorporation into the Dutch imbalance settlement system

Dutch Features:

- ¼ h settlement
- reactive balancing regime
- BRPs responsible, TSO only residuals
- activation of aFRR: merit order list based on bid prices, settled with BRP and BSP via marginal pricing methodology
- No netting of positive and negative aFRR energy deliveries
- Determination of Opportunity Prices: D+1, 10.00 CET

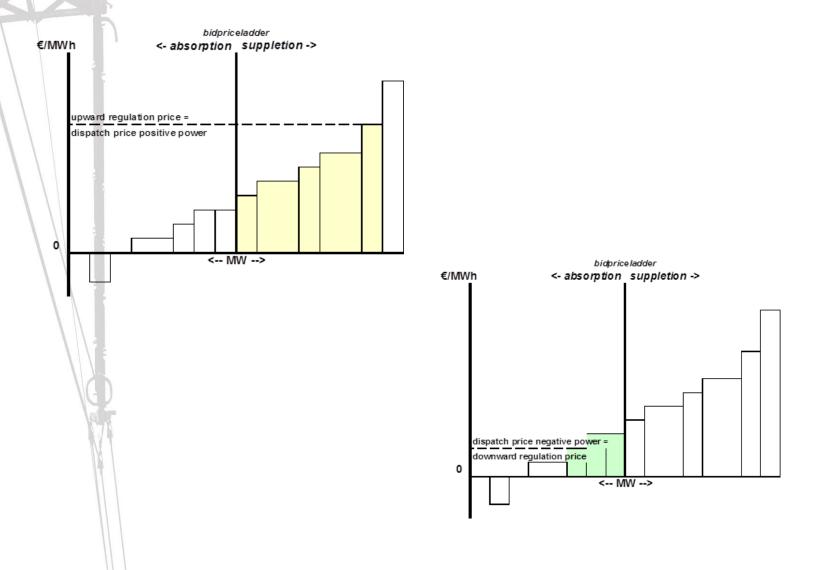
IGCC correction signal:

- results in a direct adjustment of ACE (Virtual Tie-line; administrative);

 is seen as another provider of aFRR (ACE corrected via IGCC, does not have to be corrected via a local BSP), thus:

The Dutch IGCC opportunity price(i)

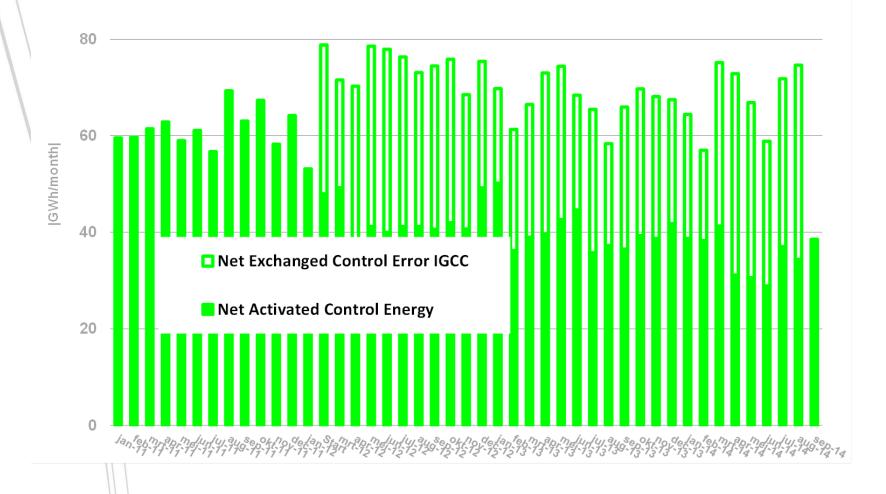
Dutch Opportunity prices based on Dutch imbalance prices

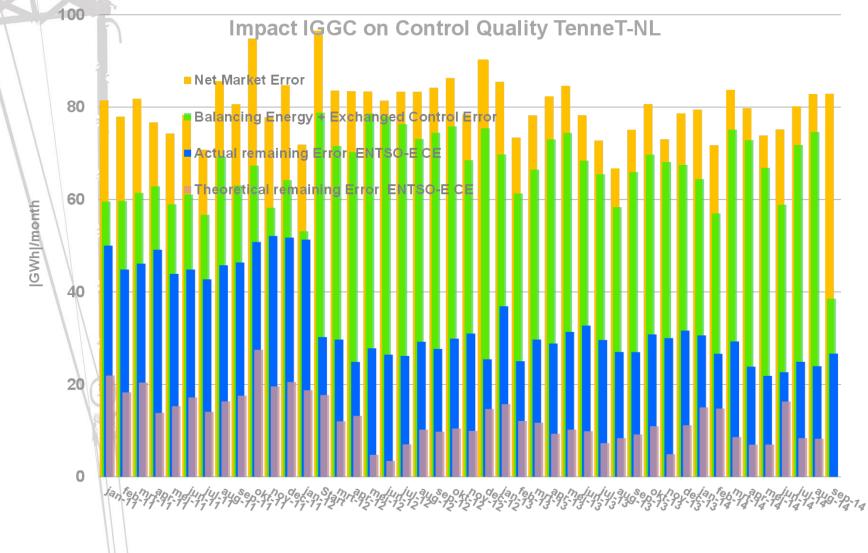

Each PTU:

- a price for upward and/or downward dispatch(BSP);
- <u>always</u> a imbalance price for short <u>and</u> for long positions (BRP);
- imbalance price constituted via activation on a merit order list (price based) with marginal pricing.

If in a PTU no upward and downward dispatch has been requested, the <u>mid-price</u> will be used to settle imbalances with BRP:

Average of the less costly upward regulation bid and the most costly downward regulation bid


The Dutch IGCC opportunity price (II)


Share: Impact IGCC on activated control energy

100

Impact IGCC on Activated Control Energy FRR/RR, TenneT-NL

Share: Impact IGCC on control quality TenneT NL

Switzerland

Iason Avramiotis - Iason.Avramiotis@swissgrid.ch

Interaction with other Ancillary (Balancing) Services

Ilm

Governance

Swiss Transmission Code and Balance Groups (BG) regulations

Mode of "activation"

Automatic adjustment of ACE through "virtual tie-lines" concept, precedes aFRR activation

Influence on sizing of aFRR or mFRR None

*Activation of aFRR in Switzerland is done Pro-Rata

Incorporation into the national imbalance settlement system

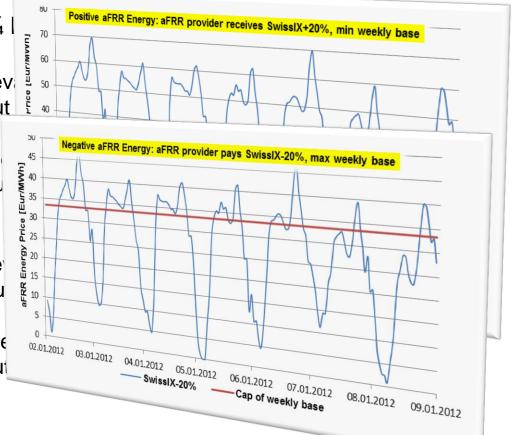
₹ The BGs that deviate from their schedules are being charged for the imbalance energy needed to be covered by control energy

The needed imbalance energy is covered by:

- Activating control energy: aFRR Energy (or mFRR Energy)
- IGCC energy exchange

aFRR Energy:

- ➢ is netted in ¼ h intervals (no separately for positive/negative)
- the price is coupled to the SwissIx spot energy price
- IGCC :

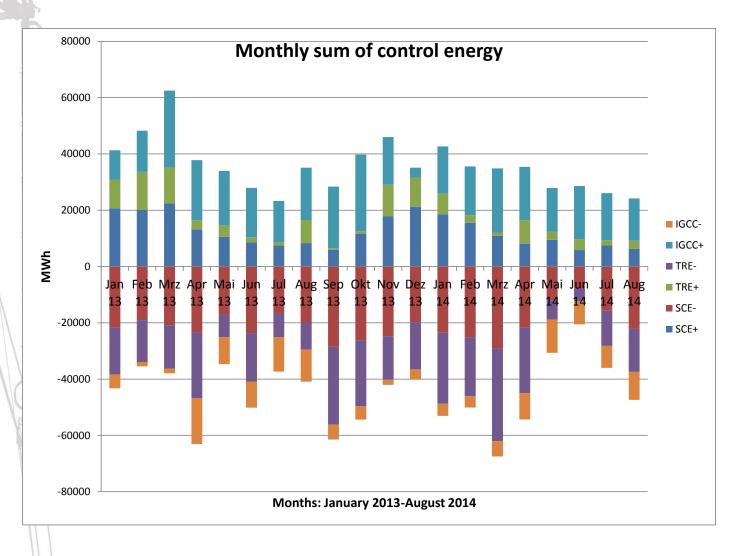

The ACE corrected via IGCC, does not have to be corrected via a local BSP, thus less control energy is used

The Swiss IGCC opportunity price(i) – aFRR Energy price

Swiss IGCC Opportunity prices are coupled with the Swiss aFRR energy price

aFRR energy price for every 1/4 l

- Swissix price is positive:
 - Positive aFRR Energy is ev with an addition of 20% but base price.
 - Negative aFRR Energy is with a reduction of 20% bu price.
 - Swissix price is negative:
 - Positive aFRR Energy is e with a reduction of 20% bu base price.
 - Negative aFRR Energy is e with an addition of 20% but price.


The Swiss IGCC opportunity price(ii)

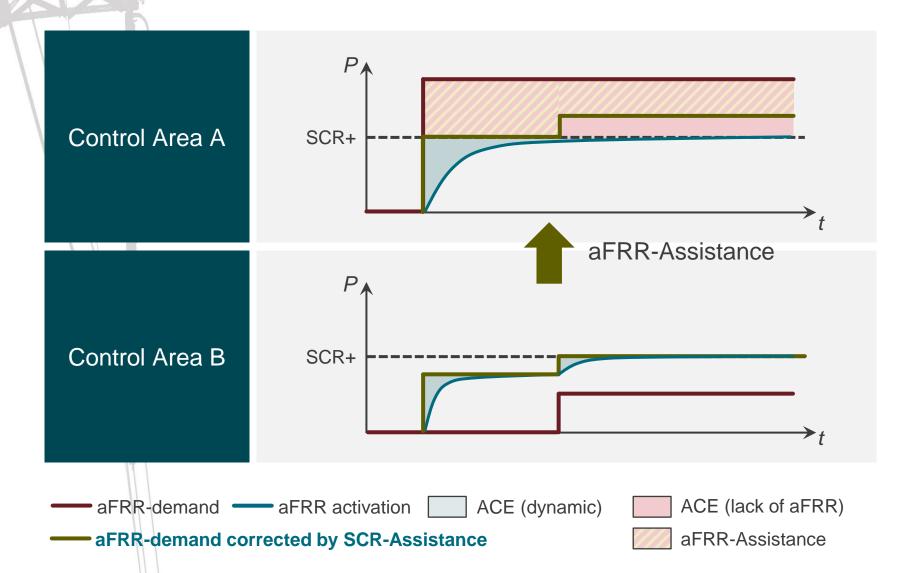
The balance of aFRR Energy delivery without IGCC energy exchange is determined

- If negative balanced demand for aFRR Energy (energy surplus): >> GCC opportunity price is the aFRR Energy negative price

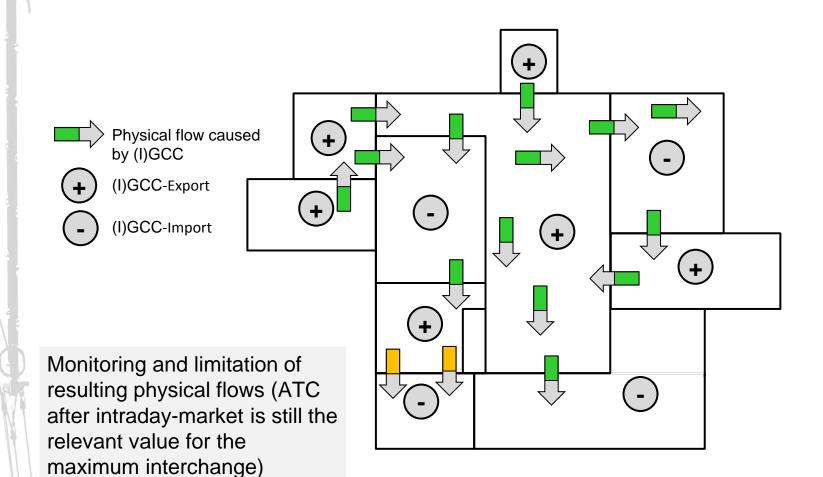
Example for Swiss IGCC Opportunity Price									
15-min intervals	Netted aFRR Energy amount without IGCC energy exchange in MWh	aFRR negative energy price (Swissix - 20%, max weekly base) €/MWh	aFRR positive energy price (Swissix +20%, min weekly base) €/MWh	Swiss IGCC Opportunity Price €/MWh					
00-15 15-30	30 -20	22.64 30.55	33.96 45.83	33.96 30.55					
30-45	0	33.37	52.06	42.72					

Share on balance of the power system

Future development


General Framework

Technical Implementation							
Control Scheme		al-Time Data Exchange	Optimization Functions		Congestion Management		
E.							
Optimisation Functionalities							
Activation of Reserves		Procurement of Reserves		Amount of Reserves			
Imbalance Netting		FCR-CMF	aFRR-CMF	Dimens	ioning	Sharing	
aFRR- Assistance	aFRR-CMO	mFRR-CMF	RR-CMF				
mFRR- Assistance	mFRR-CMO						
RR- Assistance	RR-CMO						


General Framework

Technical Implementation								
Control Scheme		eal-Time Data Exchange	Optimizati Function		Congestion Management			
Optimisation Functionalities								
Activation of Reserves		Procurement of Reserves		Amount of Reserves				
Imbalance Netting		FCR-CMF	aFRR-CMF	Dimensionir	ng Sharing			
aFRR- Assistance	aFRR-CMO	mFRR-CMF	RR-CMF					
mFRR- Assistance	mFRR-CMO	Pilot Project 9 - implemented						
RR- Assistance	RR-CMO	Pilot Project 9 - first analysis						

Under Discussion: aFRR-Assistance

Under Discussion: aFRR-Assistance

Topics / Developments

Interactions with other cooperations (Imbalance Netting or CMO)

Continuous monitoring of the settlement approach

Increase of operational transparency

Participation of other TSOs

Closing remarks

Succesful cooperation

10 TSO's

7 Countries

Imbalance netting is a real-time balancing process Various balancing philosophies

Historical regulatory and legal differences

Challenging but successful cooperation

Thank you and goodbye

Today was intended to give you insight into the cooperation today and the future of the IGCC

Feel free to contact your local IGCC Member

The presentation will be sent to all participants

