

European Network of Transmission System Operators for Electricity

POWER SCHEDULE PROFILE SPECIFICATION

2023-05-10

APPROVED DOCUMENT VERSION 2.2

Copyright notice:

2 Copyright © ENTSO-E. All Rights Reserved.

This document and its whole translations may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, except for literal and whole translation into languages other than English and under all circumstances, the copyright notice or references to ENTSO-E may not be removed.

10 This document and the information contained herein is provided on an "as is" basis.

11 ENTSO-E DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 12 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT 13 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR 14 FITNESS FOR A PARTICULAR PURPOSE.

15 This document is maintained by the ENTSO-E CIM WG. Comments or remarks are to be 16 provided at <u>cim@entsoe.eu</u>

17 NOTE CONCERNING WORDING USED IN THIS DOCUMENT

- The force of the following words is modified by the requirement level of the document in whichthey are used.
- SHALL: This word, or the terms "REQUIRED" or "MUST", means that the definition is an absolute requirement of the specification.
- SHALL NOT: This phrase, or the phrase "MUST NOT", means that the definition is an absolute prohibition of the specification.
- SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.
- SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behaviour is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behaviour described with this label.
- MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional.

32

European Network of Transmission System Operators Centsoc for Electricity

33

Revision History

Version	Release	Date	Paragraph	Comments
2	2	2023-03-24		For review.
2	2	2023-05-10		ICTC approved.

CONTENTS

35	Сор	yright no	tice:	2
36	Rev	ision Hist	ory	3
37	CON	TENTS.		4
38	1	Introduc	tion	6
39	2	Applicat	ion profile specification	6
40	_	2.1	Version information	
41		2.2	Constraints naming convention	
42		2.3	Profile constraints	
43		2.4	Metadata	
44		2.1	2.4.1 Constraints	-
45			2.4.2 Reference metadata	
46	3	Detailed	Profile Specification	
47	-	3.1	General	
48		3.2	(abstract,NC) AreaDispatchableUnit root class	
49		3.3	(abstract,NC) BaseIrregularTimeSeries	
50		3.4	(abstract,NC) BaseTimeSeries	
51		3.5	(abstract,NC) BiddingZone root class	
52		3.6	(abstract,NC) BiddingZoneBorder root class	
53		3.7	(abstract,NC) DCTieCorridor root class	
54		3.8	(abstract) EnergyConnection root class	
55		3.9	(abstract,NC) EnergyTypeReference root class	
56		3.10	(abstract) EquivalentInjection root class	
57		3.11	(abstract) GeneratingUnit root class	
58		3.12	(abstract) HydroPump root class	
59		3.13	(abstract) IdentifiedObject root class	
60		3.14	(NC) MustRunSchedule	
61		3.15	(NC) MustRunTimePoint root class	
62		3.16	(abstract) PowerElectronicsUnit root class	
63		3.17	(abstract,NC) PowerRemedialAction root class	.13
64		3.18	(NC) PowerSchedule	.13
65		3.19	(NC) PowerTimePoint root class	.14
66		3.20	(abstract,NC) SchedulingArea root class	
67		3.21	ActivePower datatype	.15
68		3.22	ReactivePower datatype	.15
69		3.23	(NC) BaseTimeSeriesKind enumeration	.16
70		3.24	(NC) TimeSeriesInterpolationKind enumeration	.16
71		3.25	UnitSymbol enumeration	.16
72		3.26	UnitMultiplier enumeration	.17
73		3.27	Boolean primitive	.18
74		3.28	DateTime primitive	.18
75		3.29	Decimal primitive	.18
76		3.30	Float primitive	.18
77		3.31	Integer primitive	.18

78	3.32	String primitive	18
79	Annex A (in	formative): Sample data	19
80	A.1	General	19
81	A.2	Sample instance data	19
82			
83	List of figu	res	
84	Figure 1 – C	Class diagram PowerScheduleProfile::PowerScheduleProfile	10
85	-	-	
86	List of table	es	
87	Table 1 – A	ttributes of PowerScheduleProfile::BaseIrregularTimeSeries	10
88	Table 2 – A	ttributes of PowerScheduleProfile::BaseTimeSeries	11
89	Table 3 – A	ttributes of PowerScheduleProfile::IdentifiedObject	12
90	Table 4 – A	ttributes of PowerScheduleProfile::MustRunSchedule	12
91 92		ssociation ends of PowerScheduleProfile::MustRunSchedule with other	12
92 93		ttributes of PowerScheduleProfile::MustRunTimePoint	
93 94		ssociation ends of PowerScheduleProfile::MustRunTimePoint with other	13
94 95			13
96	Table 8 – A	ttributes of PowerScheduleProfile::PowerSchedule	14
97	Table 9 – A	ssociation ends of PowerScheduleProfile::PowerSchedule with other	
98			
99		Attributes of PowerScheduleProfile::PowerTimePoint	15
100 101		Association ends of PowerScheduleProfile::PowerTimePoint with other	15
102	Table 12 – J	Attributes of PowerScheduleProfile::ActivePower	15
103	Table 13 – J	Attributes of PowerScheduleProfile::ReactivePower	16
104	Table 14 – I	_iterals of PowerScheduleProfile::BaseTimeSeriesKind	16
105	Table 15 – I	_iterals of PowerScheduleProfile::TimeSeriesInterpolationKind	16
106	Table 16 – I	_iterals of PowerScheduleProfile::UnitSymbol	17
107		_iterals of PowerScheduleProfile::UnitMultiplier	
108			

109 1 Introduction

110 The power schedule profile enables exchanging power schedule information and their time 111 points.

112 **2** Application profile specification

113 2.1 Version information

- 114 The content is generated from UML model file CIM100_CGMES31v01_501-115 20v02_NC22v95_MM10v01.eap.
- 116 This edition is based on the IEC 61970 UML version 'IEC61970CIM17v40', dated '2020-08-24'.
- 117 Title: Power schedule vocabulary
- 118 Keyword: PS
- Description: This vocabulary is describing the object registry profile.
- 120 Version IRI: http://entsoe.eu/ns/CIM/PowerSchedule-EU/2.2
- 121 Version info: 2.2.0
- 122 Prior version:
- 123
 Conforms to: urn:iso:std:iec:61970-600-2:ed-1|urn:iso:std:iec:61970-301:ed

 124
 7:amd1|file://iec61970cim17v40_iec61968cim13v13a_iec62325cim03v17a.eap|urn:iso:

 125
 std:iec:61970-401:draft:ed-1|urn:iso:std:iec:61970-501:draft:ed-2|file://CGMES

 126
 30v25_501-20v01.eap
- 127 Identifier: urn:uuid:470c9792-7798-4eb6-b7f2-6e18293c5f7b

128 2.2 Constraints naming convention

- 129 The naming of the rules shall not be used for machine processing. The rule names are just a 130 string. The naming convention of the constraints is as follows.
- 131 "{rule.Type}:{rule.Standard}:{rule.Profile}:{rule.Property}:{rule.Name}"
- 132 where
- 133 rule.Type: C for constraint; R for requirement

rule.Standard: the number of the standard e.g. 301 for 61970-301, 456 for 61970-456, 13 for 61968-13. 61970-600 specific constraints refer to 600 although they are related to one or combination of the 61970-450 series profiles. For NC profiles, NC is used.

- rule.Profile: the abbreviation of the profile, e.g. TP for Topology profile. If set to "ALL" theconstraint is applicable to all IEC 61970-600 profiles.
- rule.Property: for UML classes, the name of the class, for attributes and associations, the name of the class and attribute or association end, e.g. EnergyConsumer, IdentifiedObject.name, etc.
- 141 If set to "NA" the property is not applicable to a specific UML element.
- 142 rule.Name: the name of the rule. It is unique for the same property.
- 143 Example: C:600:ALL:IdentifiedObject.name:stringLength

144 **2.3 Profile constraints**

145 This clause defines requirements and constraints that shall be fulfilled by applications that 146 conform to this document.

147 This document is the master for rules and constraints tagged "NC". For the sake of self-148 containment, the list below also includes a copy of the relevant rules from IEC 61970-452, 149 tagged "452".

• C:452:ALL:NA:datatypes

- According to 61970-501, datatypes are not exchanged in the instance data. The UnitMultiplier is 1 in cases none value is specified in the profile.
- R:452:ALL:NA:exchange
- 154 Optional and required attributes and associations must be imported and exported if they 155 are in the model file prior to import.
- R:452:ALL:NA:exchange1

157 If an optional attribute does not exist in the imported file, it does not have to be exported 158 in case exactly the same data set is exported, i.e. the tool is not obliged to automatically 159 provide this attribute. If the export is resulting from an action by the user performed after 160 the import, e.g. data processing or model update the export can contain optional 161 attributes.

• R:452:ALL:NA:exchange2

In most of the profiles the selection of optional and required attributes is made so as to 163 ensure a minimum set of required attributes without which the exchange does not fulfil 164 165 its basic purpose. Business processes governing different exchanges can require 166 mandatory exchange of certain optional attributes or associations. Optional and required attributes and associations shall therefore be supported by applications which claim 167 conformance with certain functionalities of the IEC 61970-452. This provides flexibility 168 for the business processes to adapt to different business requirements and base the 169 exchanges on IEC 61970-452 compliant applications. 170

• R:452:ALL:NA:exchange3

An exporter may, at his or her discretion, produce a serialization containing additional
class data described by the CIM Schema but not required by this document provided
these data adhere to the conventions established in Clause 5.

- R:452:ALL:NA:exchange4
- From the standpoint of the model import used by a data recipient, the document 176 177 describes a subset of the CIM that importing software shall be able to interpret in order to import exported models. Data providers are free to exceed the minimum requirements 178 179 described herein as long as their resulting data files are compliant with the CIM Schema and the conventions established in Clause 5. The document, therefore, describes 180 additional classes and class data that, although not required, exporters will, in all 181 likelihood, choose to include in their data files. The additional classes and data are 182 labelled as required (cardinality 1..1) or as optional (cardinality 0..1) to distinguish them 183 from their required counterparts. Please note, however, that data importers could 184 185 potentially receive data containing instances of any and all classes described by the CIM Schema. 186
- 187 R:452:ALL:NA:cardinality

188The cardinality defined in the CIM model shall be followed, unless a more restrictive189cardinality is explicitly defined in this document. For instance, the cardinality on the190association between VoltageLevel and BaseVoltage indicates that a VoltageLevel shall191be associated with one and only one BaseVoltage, but a BaseVoltage can be associated192with zero to many VoltageLevels.

193 • R:452:ALL:NA:associations

Associations between classes referenced in this document and classes not referenced
 here are not required regardless of cardinality.

196 • R:452:ALL:IdentifiedObject.name:rule

197The attribute "name" inherited by many classes from the abstract class IdentifiedObject198is not required to be unique. It must be a human readable identifier without additional199embedded information that would need to be parsed. The attribute is used for purposes200such as User Interface and data exchange debugging. The MRID defined in the data201exchange format is the only unique and persistent identifier used for this data exchange.202The attribute IdentifiedObject.name is, however, always required for CoreEquipment203profile and Short Circuit profile.

• R:452:ALL:IdentifiedObject.description:rule

205The attribute "description" inherited by many classes from the abstract class206IdentifiedObject must contain human readable text without additional embedded207information that would need to be parsed.

• R:452:ALL:NA:uniqueIdentifier

All IdentifiedObject-s shall have a persistent and globally unique identifier (Master
 Resource Identifier - mRID).

• R:452:ALL:NA:unitMultiplier

For exchange of attributes defined using CIM Data Types (ActivePower, Susceptance, etc.) a unit multiplier of 1 is used if the UnitMultiplier specified in this document is "none".

- C:452:ALL:IdentifiedObject.name:stringLength
- 215 The string IdentifiedObject.name has a maximum of 128 characters.
- C:452:ALL:IdentifiedObject.description:stringLength
- 217 The string IdentifiedObject.description is maximum 256 characters.
- C:452:ALL:NA:float

An attribute that is defined as float (e.g. has a type Float or a type which is a Datatype with .value attribute of type Float) shall support ISO/IEC 60559:2020 for floating-point arithmetic using single precision floating point. A single precision float supports 7 significant digits where the significant digits are described as an integer, or a decimal number with 6 decimal digits. Two float values are equal when the significant with 7 digits are identical, e.g. 1234567 is equal 1.234567E6 and so are 1.2345678 and 1.234567E0.

226

227 **2.4 Metadata**

ENTSO-E agreed to extend the header and metadata definitions by IEC 61970-552 Ed2. This new header definitions rely on W3C recommendations which are used worldwide and are positively recognised by the European Commission. The new definitions of the header mainly use Provenance ontology (PROV-O), Time Ontology and Data Catalog Vocabulary (DCAT). The global new header applicable for this profile is included in the metadata and document header specification document.

The header vocabulary contains all attributes defined in IEC 61970-552. This is done only for the purpose of having one vocabulary for header and to ensure transition for data exchanges that are using IEC 61970-552:2016 header. This profile does not use IEC 61970-552:2016 header attributes and relies only on the extended attributes.

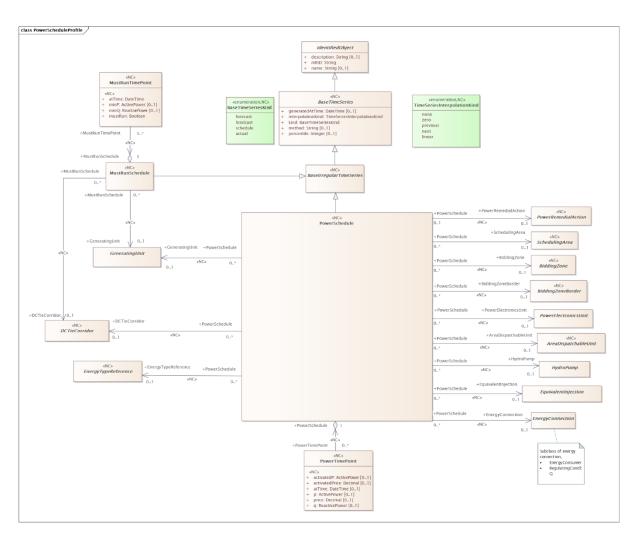
238 **2.4.1 Constraints**

The identification of the constraints related to the metadata follows the same convention for naming of the constraints as for profile constraints.

- R:NC:ALL:wasAttributedTo:usage
- 242 The prov:wasAttributedTo should normally be the "X" EIC code of the actor (prov:Agent).

243

244 2.4.2 Reference metadata


245 The header defined for this profile requires availability of a set of reference metadata. For 246 instance, the attribute prov:wasGeneratedBy requires a reference to an activity which produced 247 the model or the related process. The activities are defined as reference metadata and their 248 identifiers are referenced from the header to enable the receiving entity to retrieve the "static" (reference) information that is not modified frequently. This approach imposes a requirement 249 250 that both the sending entity and the receiving entity have access to a unique version of the reference metadata. Therefore, each business process shall define which reference metadata 251 252 is used and where it is located.

253 **3 Detailed Profile Specification**

- 254 **3.1 General**
- 255 This package contains the power schedule profile.

European Network of Transmission System Operators for Electricity

256

257

Figure 1 – Class diagram PowerScheduleProfile::PowerScheduleProfile

258 Figure 1: The diagram contains main classes related to the power schedule profile.

259 3.2 (abstract,NC) AreaDispatchableUnit root class

Allocates a given producing or consuming unit, including direct current corridor and collection of units, to a given control area (through the scheduling area) for supporting the control of the given area through dispatch instruction.

263 **3.3 (abstract,NC) BaseIrregularTimeSeries**

- 264 Inheritance path = <u>BaseTimeSeries</u> : <u>IdentifiedObject</u>
- 265 Time series that has irregular points in time.
- 266 Table 1 shows all attributes of BaseIrregularTimeSeries.

267

Table 1 – Attributes of PowerScheduleProfile::BaseIrregularTimeSeries

name	mult	type	description
interpolationKind	11	TimeSeriesInterpolation Kind	inherited from: <u>BaseTimeSeries</u>
kind	11	BaseTimeSeriesKind	inherited from: BaseTimeSeries
generatedAtTime	01	<u>DateTime</u>	inherited from: BaseTimeSeries
percentile	01	Integer	inherited from: BaseTimeSeries
method	01	<u>String</u>	inherited from: BaseTimeSeries

name	mult	type	description
description	01	<u>String</u>	inherited from: IdentifiedObject
mRID	11	<u>String</u>	inherited from: IdentifiedObject
name	01	<u>String</u>	inherited from: IdentifiedObject

269 3.4 (abstract,NC) BaseTimeSeries

- 270 Inheritance path = IdentifiedObject
- 271 Time series of values at points in time.
- 272 Table 2 shows all attributes of BaseTimeSeries.
- 273

Table 2 – Attributes of PowerScheduleProfile::BaseTimeSeries

name	mult	type	description
interpolationKind	11	TimeSeriesInterpolation Kind	Kind of interpolation done between time point.
kind	11	BaseTimeSeriesKind	Kind of base time series.
generatedAtTime	01	<u>DateTime</u>	The time this time series (entity) come to existents and available for use.
percentile	01	Integer	The percentile is a number where a certain percentage of scores/ranking/values of a sample fall below that number. This is a way for expressing uncertainty in the number provided.
method	01	String	Method used to create the value. This is used for identification in the case where there is multiple time series for the same validity period and kind.
description	01	<u>String</u>	inherited from: IdentifiedObject
mRID	11	<u>String</u>	inherited from: IdentifiedObject
name	01	String	inherited from: IdentifiedObject

274

275 3.5 (abstract,NC) BiddingZone root class

A bidding zone is a market-based method for handling power transmission congestion. It consists of scheduling areas that include the relevant production (supply) and consumption (demand) to form an electrical area with the same market price without capacity allocation.

279 **3.6** (abstract,NC) BiddingZoneBorder root class

280 Defines the aggregated connection capacity between two Bidding Zones.

281 3.7 (abstract,NC) DCTieCorridor root class

A collection of one or more direct current poles that connect two different control areas.

283 3.8 (abstract) EnergyConnection root class

A connection of energy generation or consumption on the power system model.

285 3.9 (abstract,NC) EnergyTypeReference root class

An energy type reference refers to an energy characteristic that is needed for reporting, e.g. European Energy Certificate System (EECS). The kind of energy should be possible to be linked with different type of energy forecast, e.g. wind production for a given area based on wind forecast.

290 **3.10 (abstract) EquivalentInjection root class**

This class represents equivalent injections (generation or load). Voltage regulation is allowed only at the point of connection.

3.11 (abstract) GeneratingUnit root class 293

294 A single or set of synchronous machines for converting mechanical power into alternatingcurrent power. For example, individual machines within a set may be defined for scheduling 295 purposes while a single control signal is derived for the set. In this case there would be a 296 297 GeneratingUnit for each member of the set and an additional GeneratingUnit corresponding to 298 the set.

299 3.12 (abstract) HydroPump root class

300 A synchronous motor-driven pump, typically associated with a pumped storage plant.

301 3.13 (abstract) IdentifiedObject root class

- 302 This is a root class to provide common identification for all classes needing identification and 303 naming attributes.
- Table 3 shows all attributes of IdentifiedObject. 304
- 305

Table 3 – Attributes of PowerScheduleProfile::IdentifiedObject

name	mult	type	description
description	01	String	The description is a free human readable text describing or naming the object. It may be non unique and may not correlate to a naming hierarchy.
mRID	11	String	Master resource identifier issued by a model authority. The mRID is unique within an exchange context. Global uniqueness is easily achieved by using a UUID, as specified in RFC 4122, for the mRID. The use of UUID is strongly recommended.
			For CIMXML data files in RDF syntax conforming to IEC 61970-552, the mRID is mapped to rdf:ID or rdf:about attributes that identify CIM object elements.
name	01	String	The name is any free human readable and possibly non unique text naming the object.

306

307 3.14 (NC) MustRunSchedule

308 Inheritance path = <u>BaseIrregularTimeSeries</u> : <u>BaseTimeSeries</u> : <u>IdentifiedObject</u>

309 Time series represent irregular must-run instruction values at given points in time. This could be instruction to a reliability must-run (RMR) generation facility that is necessary to run to meet 310 certain operating conditions in order to maintain the security of power systems in a competitive 311 environment.

312

Table 4 shows all attributes of MustRunSchedule. 313

314

Table 4 – Attributes of PowerScheduleProfile::MustRunSchedule

name	mult	type	description
interpolationKind	11	TimeSeriesInterpolation Kind	inherited from: <u>BaseTimeSeries</u>
kind	11	BaseTimeSeriesKind	inherited from: BaseTimeSeries
generatedAtTime	01	<u>DateTime</u>	inherited from: BaseTimeSeries
percentile	01	Integer	inherited from: BaseTimeSeries
method	01	<u>String</u>	inherited from: BaseTimeSeries
description	01	<u>String</u>	inherited from: IdentifiedObject
mRID	11	<u>String</u>	inherited from: IdentifiedObject
name	01	<u>String</u>	inherited from: IdentifiedObject

316 Table 5 shows all association ends of MustRunSchedule with other classes.

317Table 5 – Association ends of PowerScheduleProfile::MustRunSchedule with other318classes

mult from	name	mult to	type	description
0*	DCTieCorridor	01	DCTieCorridor	(NC) Hydro pump which belongs to the power schedule.
0*	GeneratingUnit	01	GeneratingUnit	(NC) Generating unit which belongs to the must run schedule.

319

320 **3.15 (NC) MustRunTimePoint root class**

- 321 Must-run instruction value at a given point in time.
- 322 Table 6 shows all attributes of MustRunTimePoint.

323

Table 6 – Attributes of PowerScheduleProfile::MustRunTimePoint

name	mult	type	description
atTime	11	<u>DateTime</u>	(NC) The time the data is valid for.
mustRun	11	Boolean	(NC) True, if the must-run instruction is active this time point. Otherwise false.
minP	01	<u>ActivePower</u>	(NC) Minimum active power injection that is needed to meet must-run requirement. This value can be higher or equal to minimum operational limit. Load sign convention is used, i.e. positive sign means flow out from a node.
minQ	01	ReactivePower	(NC) Minimum reactive power injection that is needed to meet must-run requirement. This value can be higher or equal to minimum operational limit. Load sign convention is used, i.e. positive sign means flow out from a node.

324 325

Table 7 shows all association ends of MustRunTimePoint with other classes.

326

327

Table 7 – Association ends of PowerScheduleProfile::MustRunTimePoint with other classes

mult from	name	mult to	type	description
1*	MustRunSchedule	11	MustRunSchedule	(NC) Time series the time point values belongs to.

328

329 3.16 (abstract) PowerElectronicsUnit root class

A generating unit or battery or aggregation that connects to the AC network using power electronics rather than rotating machines.

332 3.17 (abstract,NC) PowerRemedialAction root class

333 Energy remedial action describes actions to rearrange power schedules.

334 3.18 (NC) PowerSchedule

- 335 Inheritance path = <u>BaseIrregularTimeSeries</u> : <u>BaseTimeSeries</u> : <u>IdentifiedObject</u>
- 336 Time series represent irregular power, active and reactive, values at given points in time.
- 337 Table 8 shows all attributes of PowerSchedule.

338 **Tab**

Table 8 – Attributes of PowerScheduleProfile::PowerSchedule

name	mult	type	description
interpolationKind	11	TimeSeriesInterpolation Kind	inherited from: BaseTimeSeries
kind	11	BaseTimeSeriesKind	inherited from: BaseTimeSeries
generatedAtTime	01	<u>DateTime</u>	inherited from: BaseTimeSeries
percentile	01	Integer	inherited from: BaseTimeSeries
method	01	<u>String</u>	inherited from: BaseTimeSeries
description	01	<u>String</u>	inherited from: IdentifiedObject
mRID	11	<u>String</u>	inherited from: IdentifiedObject
name	01	<u>String</u>	inherited from: IdentifiedObject

339

340 Table 9 shows all association ends of PowerSchedule with other classes.

341 Table 9 – Association ends of PowerScheduleProfile::PowerSchedule with other classes

mult from	name	mult to	type	description
0*	AreaDispatchableUnit	01	AreaDispatchableUnit	(NC) Area disptachable unit which belongs to the power schedule.
0*	BiddingZone	01	<u>BiddingZone</u>	(NC) Bidding zone which has powerschedules.
0*	DCTieCorridor	01	DCTieCorridor	(NC) DC tie corridor which belongs to the power schedule.
0*	EnergyConnection	01	EnergyConnection	(NC) The energy connection that has a power schedule.
0*	EnergyTypeReference	01	EnergyTypeReference	(NC) Energy type reference which belongs to the power bidding zone.
0*	GeneratingUnit	01	GeneratingUnit	(NC) Generating unit which belongs to the power schedule.
0*	HydroPump	01	<u>HydroPump</u>	(NC) Hydro pump which belongs to the power schedule.
0*	PowerElectronicsUnit	01	PowerElectronicsUnit	(NC) Power electronics unit which belongs to the power schedule.
01	PowerRemedialAction	01	PowerRemedialAction	(NC) Power remedial action which belongs to the Remedial Action Schedule.
0*	SchedulingArea	01	<u>SchedulingArea</u>	Scheduling area which has power schedules.
0*	BiddingZoneBorder	01	BiddingZoneBorder	(NC) Bidding zone border which belongs to the power schedule.
0*	EquivalentInjection	01	EquivalentInjection	(NC) Equivalent injection which belongs to the power schedule.

342

343 3.19 (NC) PowerTimePoint root class

- 344 Power, active and reactive, value at a given point in time.
- 345 Table 10 shows all attributes of PowerTimePoint.

Table 10 – Attributes of PowerScheduleProfile::PowerTimePoint

name	mult	type	description
atTime	01	<u>DateTime</u>	(NC) The time the data is valid for.
ρ	01	<u>ActivePower</u>	(NC) Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
q	01	ReactivePower	(NC) Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
price	01	Decimal	(NC) Price for the scheduled active power per unit of active power. e.g. per MW.
activatedP	01	ActivePower	(NC) Active power activated as part of redispatch. Negative number means that the value is scheduling down. Positive number means that the value is scheduling up.
activatedPrice	01	<u>Decimal</u>	(NC) Price for the activated active power per unit e.g. per MW.

347 348

Table 11 shows all association ends of PowerTimePoint with other classes.

349 350

Table 11 – Association ends of PowerScheduleProfile::PowerTimePoint with other
classes

mult from	name	mult to	type	description
0*	PowerSchedule	11	PowerSchedule	(NC) Time series the time point values belongs to.

351

352 3.20 (abstract,NC) SchedulingArea root class

An area where production and/or consumption of energy can be forecasted, scheduled and 353 measured. The area is operated by only one system operator, typically a Transmission System 354 Operator (TSO). The area can consist of a sub area, which has the same definition as the main 355 area, but it can be operated by another system operator (typically Distributed System Operator 356 (DSO) or a Closed Distributed System Operator (CDSO)). This includes microgrid concept. A 357 358 substation is the smallest grouping that can be included in the area. The area size should be 359 considered in terms of the possibility of accumulated reading (settlement metering) and the 360 capability of operating as an island.

361 3.21 ActivePower datatype

362 Product of RMS value of the voltage and the RMS value of the in-phase component of the 363 current.

364 Table 12 shows all attributes of ActivePower.

365

Table 12 – Attributes of PowerScheduleProfile::ActivePower

name	mult	type	description
multiplier	01	<u>UnitMultiplier</u>	(const=M)
unit	01	<u>UnitSymbol</u>	(const=W)
value	01	<u>Float</u>	

366

367 3.22 ReactivePower datatype

- 368 Product of RMS value of the voltage and the RMS value of the quadrature component of the 369 current.
- 370 Table 13 shows all attributes of ReactivePower.

Table 13 – Attributes of PowerScheduleProfile::ReactivePower

name	mult	type	description
value	01	<u>Float</u>	
unit	01	<u>UnitSymbol</u>	(const=VAr)
multiplier	01	<u>UnitMultiplier</u>	(const=M)

372

376

373 3.23 (NC) BaseTimeSeriesKind enumeration

- 374 Kind of time series.
- 375 Table 14 shows all literals of BaseTimeSeriesKind.

Table 14 – Literals of PowerScheduleProfile::BaseTimeSeriesKind

literal	value	description
forecast		Time series is forecast data. The values represent the result of scientific predictions based on historical time stamped data.
hindcast		Time series is hindcast data. The value represent probable past (historic) condition given by calculation done using actual values. For instance, determine the among of wind based on the energy produced by wind. However, hindcast is typical the result of a simulated forecasts for historical periods.
schedule		Time series is schedule data. The values represent the result of a committed and plan forecast data that has been through a quality control and could incur penalty when not followed.
actual		Time series is actual data. The values represent measured or calculated values that represent the actual behaviour.

377

378 3.24 (NC) TimeSeriesInterpolationKind enumeration

379 Kinds of interpolation of values between two time point.

380 Table 15 shows all literals of TimeSeriesInterpolationKind.

381

Table 15 – Literals of PowerScheduleProfile::TimeSeriesInterpolationKind

literal	value	description
none		No interpolation is applied.
zero		The value between two time points is set to zero.
previous		The value between two time points is set to previous value.
next		The value between two time points is set to next value.
linear		Linear interpolation is applied for values between two time points.

382

383 3.25 UnitSymbol enumeration

The derived units defined for usage in the CIM. In some cases, the derived unit is equal to an SI unit. Whenever possible, the standard derived symbol is used instead of the formula for the derived unit. For example, the unit symbol Farad is defined as "F" instead of "CPerV". In cases where a standard symbol does not exist for a derived unit, the formula for the unit is used as

- the unit symbol. For example, density does not have a standard symbol and so it is represented
 as "kgPerm3". With the exception of the "kg", which is an SI unit, the unit symbols do not contain
 multipliers and therefore represent the base derived unit to which a multiplier can be applied as
 a whole.
- 392 Every unit symbol is treated as an unparseable text as if it were a single-letter symbol. The 393 meaning of each unit symbol is defined by the accompanying descriptive text and not by the 394 text contents of the unit symbol.
- To allow the widest possible range of serializations without requiring special character handling, several substitutions are made which deviate from the format described in IEC 80000-1. The division symbol "/" is replaced by the letters "Per". Exponents are written in plain text after the unit as "m3" instead of being formatted as "m" with a superscript of 3 or introducing a symbol as in "m^3". The degree symbol "°" is replaced with the letters "deg". Any clarification of the meaning for a substitution is included in the description for the unit symbol.
- 401 Non-SI units are included in list of unit symbols to allow sources of data to be correctly labelled
 402 with their non-SI units (for example, a GPS sensor that is reporting numbers that represent feet
 403 instead of meters). This allows software to use the unit symbol information correctly convert
 404 and scale the raw data of those sources into SI-based units.
- 405 The integer values are used for harmonization with IEC 61850.
- 406 Table 16 shows all literals of UnitSymbol.

Table 16 – Literals of PowerScheduleProfile::UnitSymbol

literal	value	description
w	38	Real power in watts (J/s). Electrical power may have real and reactive components. The real portion of electrical power (I ² R or VIcos(phi)), is expressed in Watts. See also apparent power and reactive power.
VAr	63	Reactive power in volt amperes reactive. The "reactive" or "imaginary" component of electrical power (VIsin(phi)). (See also real power and apparent power).
		Note: Different meter designs use different methods to arrive at their results. Some meters may compute reactive power as an arithmetic value, while others compute the value vectorially. The data consumer should determine the method in use and the suitability of the measurement for the intended purpose.

408

409 **3.26 UnitMultiplier enumeration**

The unit multipliers defined for the CIM. When applied to unit symbols, the unit symbol is treated as a derived unit. Regardless of the contents of the unit symbol text, the unit symbol shall be treated as if it were a single-character unit symbol. Unit symbols should not contain multipliers, and it should be left to the multiplier to define the multiple for an entire data type.

For example, if a unit symbol is "m2Pers" and the multiplier is "k", then the value is $k(m^{**2/s})$,

and the multiplier applies to the entire final value, not to any individual part of the value. This
can be conceptualized by substituting a derived unit symbol for the unit type. If one imagines
that the symbol "P" represents the derived unit "m2Pers", then applying the multiplier "k" can
be conceptualized simply as "kP".

- For example, the SI unit for mass is "kg" and not "g". If the unit symbol is defined as "kg", then 419 420 the multiplier is applied to "kg" as a whole and does not replace the "k" in front of the "g". In this case, the multiplier of "m" would be used with the unit symbol of "kg" to represent one gram. 421 422 As a text string, this violates the instructions in IEC 80000-1. However, because the unit symbol 423 in CIM is treated as a derived unit instead of as an SI unit, it makes more sense to conceptualize the "kg" as if it were replaced by one of the proposed replacements for the SI mass symbol. If 424 425 one imagines that the "kg" were replaced by a symbol "P", then it is easier to conceptualize the 426 multiplier "m" as creating the proper unit "mP", and not the forbidden unit "mkg".
- 427 Table 17 shows all literals of UnitMultiplier.

Table 17 – Literals of PowerScheduleProfile::UnitMultiplier

literal	value	description
Μ	6	Mega 10**6.

429

428

430 **3.27 Boolean primitive**

431 A type with the value space "true" and "false".

432 **3.28 DateTime primitive**

Date and time as "yyyy-mm-ddThh:mm:ss.sss", which conforms with ISO 8601. UTC time zone
is specified as "yyyy-mm-ddThh:mm:ss.sssZ". A local timezone relative UTC is specified as
"yyyy-mm-ddThh:mm:ss.sss-hh:mm". The second component (shown here as "ss.sss") could
have any number of digits in its fractional part to allow any kind of precision beyond seconds.

437 **3.29 Decimal primitive**

438 Decimal is the base-10 notational system for representing real numbers.

439 **3.30 Float primitive**

440 A floating point number. The range is unspecified and not limited.

441 3.31 Integer primitive

442 An integer number. The range is unspecified and not limited.

443 3.32 String primitive

- 444 A string consisting of a sequence of characters. The character encoding is UTF-8. The string 445 length is unspecified and unlimited.
- 446
- 447
- 448

Annex A (informative): Sample data

450 A.1 General

This Annex is designed to illustrate the profile by using fragments of sample data. It is not meant to be a complete set of examples covering all possibilities of using the profile. Defining a complete set of test data is considered a separate activity to be performed for the purpose of setting up interoperability testing and conformity related to this profile.

455 A.2 Sample instance data

456 Test data files are available in the CIM EG SharePoint.

457

458