List of stereotye to categorize subProfiles ShortCircuit Operation Abstract Entsoe

Concrete Classes (Entsoe)

Concrete Classes

AsynchronousMachineEquivalentCircuit

AsynchronousMachineDynamics

The electrical equations of all variations of the asynchronous model are based on the AsynchronousEquivalentCircuit diagram for the direct and quadrature axes, with two equivalent rotor windings in each axis.

Equations for conversion between Equivalent Circuit and Time Constant Reactance forms:
Xs = Xm + Xl
X' = Xl + Xm * Xlr1 / (Xm + Xlr1)
X'' = Xl + Xm * Xlr1* Xlr2 / (Xm * Xlr1 + Xm * Xlr2 + Xlr1 * Xlr2)
T'o = (Xm + Xlr1) / (omega0 * Rr1)
T''o = (Xm * Xlr1 + Xm * Xlr2 + Xlr1 * Xlr2) / (omega0 * Rr2 * (Xm + Xlr1)

Same equations using CIM attributes from AsynchronousMachineTimeConstantReactance class on left of = sign and AsynchronousMachineEquivalentCircuit class on right (except as noted):
xs = xm + RotatingMachineDynamics.statorLeakageReactance
xp = RotatingMachineDynamics.statorLeakageReactance + xm * xlr1 / (xm + xlr1)
xpp = RotatingMachineDynamics.statorLeakageReactance + xm * xlr1* xlr2 / (xm * xlr1 + xm * xlr2 + xlr1 * xlr2)
tpo = (xm + xlr1) / (2*pi*nominal frequency * rr1)
tppo = (xm * xlr1 + xm * xlr2 + xlr1 * xlr2) / (2*pi*nominal frequency * rr2 * (xm + xlr1).

Native Members

rr1

0..1

PU

Damper 1 winding resistance.

rr2

0..1

PU

Damper 2 winding resistance.

xlr1

0..1

PU

Damper 1 winding leakage reactance.

xlr2

0..1

PU

Damper 2 winding leakage reactance.

xm

0..1

PU

Magnetizing reactance.

Inherited Members

Inheritance pass: ->AsynchronousMachineDynamics->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachine

1..1

AsynchronousMachine

see AsynchronousMachineDynamics

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

AsynchronousMachineTimeConstantReactance

AsynchronousMachineDynamics

Parameter Notes:


  1. If X'' = X', a single cage (one equivalent rotor winding per axis) is modelled.

  2. The “p” in the attribute names is a substitution for a “prime” in the usual parameter notation, e.g. tpo refers to T'o.



The parameters used for models expressed in time constant reactance form include:

Native Members

tpo

0..1

Seconds

Transient rotor time constant (T'o) (> T''o). Typical Value = 5.

tppo

0..1

Seconds

Subtransient rotor time constant (T''o) (> 0). Typical Value = 0.03.

xp

0..1

PU

Transient reactance (unsaturated) (X') (>=X''). Typical Value = 0.5.

xpp

0..1

PU

Subtransient reactance (unsaturated) (X'') (> Xl). Typical Value = 0.2.

xs

0..1

PU

Synchronous reactance (Xs) (>= X'). Typical Value = 1.8.

Inherited Members

Inheritance pass: ->AsynchronousMachineDynamics->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachine

1..1

AsynchronousMachine

see AsynchronousMachineDynamics

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

AsynchronousMachineUserDefined

UserDefinedModels

Asynchronous machine whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->AsynchronousMachineDynamics->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachine

1..1

AsynchronousMachine

see AsynchronousMachineDynamics

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

DiscExcContIEEEDEC1A

DiscontinuousExcitationControlDynamics

The class represents IEEE Type DEC1A discontinuous excitation control model that boosts generator excitation to a level higher than that demanded by the voltage regulator and stabilizer immediately following a system fault.

Reference: IEEE Standard 421.5-2005 Section 12.2.

Native Members

esc

1..1

PU

Speed change reference (ESC). Typical Value = 0.0015.

kan

1..1

PU

Discontinuous controller gain (KAN). Typical Value = 400.

ketl

1..1

PU

Terminal voltage limiter gain (KETL). Typical Value = 47.

tan

1..1

Seconds

Discontinuous controller time constant (TAN). Typical Value = 0.08.

td

1..1

Seconds

Time constant (TD). Typical Value = 0.03.

tl1

1..1

Seconds

Time constant (TL1). Typical Value = 0.025.

tl2

1..1

Seconds

Time constant (TL2). Typical Value = 1.25.

tw5

1..1

Seconds

DEC washout time constant (TW5). Typical Value = 5.

val

1..1

PU

Regulator voltage reference (VAL). Typical Value = 5.5.

vanmax

1..1

PU

Limiter for Van (VANMAX).

vomax

1..1

PU

Limiter (VOMAX). Typical Value = 0.3.

vomin

1..1

PU

Limiter (VOMIN). Typical Value = 0.1.

vsmax

1..1

PU

Limiter (VSMAX). Typical Value = 0.2.

vsmin

1..1

PU

Limiter (VSMIN). Typical Value = -0.066.

vtc

1..1

PU

Terminal voltage level reference (VTC). Typical Value = 0.95.

vtlmt

1..1

PU

Voltage reference (VTLMT). Typical Value = 1.1.

vtm

1..1

PU

Voltage limits (VTM). Typical Value = 1.13.

vtn

1..1

PU

Voltage limits (VTN). Typical Value = 1.12.

Inherited Members

Inheritance pass: ->DiscontinuousExcitationControlDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see DiscontinuousExcitationControlDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

DiscExcContIEEEDEC2A

DiscontinuousExcitationControlDynamics

The class represents IEEE Type DEC2A model for the discontinuous excitation control. This system provides transient excitation boosting via an open-loop control as initiated by a trigger signal generated remotely.

Reference: IEEE Standard 421.5-2005 Section 12.3.

Native Members

td1

1..1

Seconds

Discontinuous controller time constant (TD1).

td2

1..1

Seconds

Discontinuous controller washout time constant (TD2).

vdmax

1..1

PU

Limiter (VDMAX).

vdmin

1..1

PU

Limiter (VDMIN).

vk

1..1

PU

Discontinuous controller input reference (VK).

Inherited Members

Inheritance pass: ->DiscontinuousExcitationControlDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see DiscontinuousExcitationControlDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

DiscExcContIEEEDEC3A

DiscontinuousExcitationControlDynamics

The class represents IEEE Type DEC3A model. In some systems, the stabilizer output is disconnected from the regulator immediately following a severe fault to prevent the stabilizer from competing with action of voltage regulator during the first swing.

Reference: IEEE Standard 421.5-2005 Section 12.4.

Native Members

tdr

1..1

Seconds

Reset time delay (TDR).

vtmin

1..1

PU

Terminal undervoltage comparison level (VTMIN).

Inherited Members

Inheritance pass: ->DiscontinuousExcitationControlDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see DiscontinuousExcitationControlDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

DiscontinuousExcitationControlUserDefined

UserDefinedModels

Discontinuous excitation control function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->DiscontinuousExcitationControlDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see DiscontinuousExcitationControlDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAC1A

ExcitationSystemDynamics

Modified IEEE AC1A alternator-supplied rectifier excitation system with different rate feedback source.

Native Members

hvlvgates

1..1

Boolean

Indicates if both HV gate and LV gate are active (HVLVgates).
true = gates are used
false = gates are not used.
Typical Value = true.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 400.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 0.2.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (Kd). Typical Value = 0.38.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (Kf). Typical Value = 0.03.

kf1

1..1

PU

Coefficient to allow different usage of the model (Kf1). Typical Value = 0.

kf2

1..1

PU

Coefficient to allow different usage of the model (Kf2). Typical Value = 1.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve1, back of commutating reactance (Se[Ve1]). Typical Value = 0.1.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve2, back of commutating reactance (Se[Ve2]). Typical Value = 0.03.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.02.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 0.8.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 1.

vamax

1..1

PU

Maximum voltage regulator output (Vamax). Typical Value = 14.5.

vamin

1..1

PU

Minimum voltage regulator output (Vamin). Typical Value = -14.5.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve1). Typical Value = 4.18.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve2). Typical Value = 3.14.

vrmax

1..1

PU

Maximum voltage regulator outputs (Vrmax). Typical Value = 6.03.

vrmin

1..1

PU

Minimum voltage regulator outputs (Rrmin). Typical Value = -5.43.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAC2A

ExcitationSystemDynamics

Modified IEEE AC2A alternator-supplied rectifier excitation system with different field current limit.

Native Members

hvgate

1..1

Boolean

Indicates if HV gate is active (HVgate).
true = gate is used
false = gate is not used.
Typical Value = true.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 400.

kb

1..1

PU

Second stage regulator gain (Kb) (>0). Exciter field current controller gain. Typical Value = 25.

kb1

1..1

PU

Second stage regulator gain (Kb1). It is exciter field current controller gain used as alternative to Kb to represent a variant of the ExcAC2A model. Typical Value = 25.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 0.28.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (Kd). Typical Value = 0.35.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (Kf). Typical Value = 0.03.

kh

1..1

PU

Exciter field current feedback gain (Kh). Typical Value = 1.

kl

1..1

PU

Exciter field current limiter gain (Kl). Typical Value = 10.

kl1

1..1

PU

Coefficient to allow different usage of the model (Kl1). Typical Value = 1.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

lvgate

1..1

Boolean

Indicates if LV gate is active (LVgate).
true = gate is used
false = gate is not used.
Typical Value = true.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve1, back of commutating reactance (Se[Ve1]). Typical Value = 0.037.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve2, back of commutating reactance (Se[Ve2]). Typical Value = 0.012.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.02.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 0.6.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 1.

vamax

1..1

PU

Maximum voltage regulator output (Vamax). Typical Value = 8.

vamin

1..1

PU

Minimum voltage regulator output (Vamin). Typical Value = -8.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve1). Typical Value = 4.4.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve2). Typical Value = 3.3.

vfemax

1..1

PU

Exciter field current limit reference (Vfemax). Typical Value = 4.4.

vlr

1..1

PU

Maximum exciter field current (Vlr). Typical Value = 4.4.

vrmax

1..1

PU

Maximum voltage regulator outputs (Vrmax). Typical Value = 105.

vrmin

1..1

PU

Minimum voltage regulator outputs (Vrmin). Typical Value = -95.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAC3A

ExcitationSystemDynamics

Modified IEEE AC3A alternator-supplied rectifier excitation system with different field current limit.

Native Members

efdn

1..1

PU

Value of EFD at which feedback gain changes (Efdn). Typical Value = 2.36.

ka

1..1

Seconds

Voltage regulator gain (Ka). Typical Value = 45.62.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 0.104.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (Kd). Typical Value = 0.499.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (Kf). Typical Value = 0.143.

kf1

1..1

PU

Coefficient to allow different usage of the model (Kf1). Typical Value = 1.

kf2

1..1

PU

Coefficient to allow different usage of the model (Kf2). Typical Value = 0.

klv

1..1

PU

Gain used in the minimum field voltage limiter loop (Klv). Typical Value = 0.194.

kn

1..1

PU

Excitation control system stabilizer gain (Kn). Typical Value =0.05.

kr

1..1

PU

Constant associated with regulator and alternator field power supply (Kr). Typical Value =3.77.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve1, back of commutating reactance (Se[Ve1]). Typical Value = 1.143.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve2, back of commutating reactance (Se[Ve2]). Typical Value = 0.1.

ta

1..1

PU

Voltage regulator time constant (Ta). Typical Value = 0.013.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 1.17.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 1.

vamax

1..1

PU

Maximum voltage regulator output (Vamax). Typical Value = 1.

vamin

1..1

PU

Minimum voltage regulator output (Vamin). Typical Value = -0.95.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve1) equals Vemax (Ve1). Typical Value = 6.24.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve2). Typical Value = 4.68.

vemin

1..1

PU

Minimum exciter voltage output (Vemin). Typical Value = 0.1.

vfemax

1..1

PU

Exciter field current limit reference (Vfemax). Typical Value = 16.

vlv

1..1

PU

Field voltage used in the minimum field voltage limiter loop (Vlv). Typical Value = 0.79.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAC4A

ExcitationSystemDynamics

Modified IEEE AC4A alternator-supplied rectifier excitation system with different minimum controller output.

Native Members

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 200.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 0.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.015.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 10.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 1.

vimax

1..1

PU

Maximum voltage regulator input limit (Vimax). Typical Value = 10.

vimin

1..1

PU

Minimum voltage regulator input limit (Vimin). Typical Value = -10.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 5.64.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = -4.53.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAC5A

ExcitationSystemDynamics

Modified IEEE AC5A alternator-supplied rectifier excitation system with different minimum controller output.

Native Members

a

1..1

Simple_Float

Coefficient to allow different usage of the model (a). Typical Value = 1.

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (Efd1). Typical Value = 5.6.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (Efd2). Typical Value = 4.2.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 400.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (Kf). Typical Value = 0.03.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Efd1 (SE[Efd1]). Typical Value = 0.86.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Efd2 (SE[Efd2]). Typical Value = 0.5.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.02.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 0.8.

tf1

1..1

Seconds

Excitation control system stabilizer time constant (Tf1). Typical Value = 1.

tf2

1..1

Seconds

Excitation control system stabilizer time constant (Tf2). Typical Value = 0.8.

tf3

1..1

Seconds

Excitation control system stabilizer time constant (Tf3). Typical Value = 0.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 7.3.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value =-7.3.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAC6A

ExcitationSystemDynamics

Modified IEEE AC6A alternator-supplied rectifier excitation system with speed input.

Native Members

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 536.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 0.173.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (Kd). Typical Value = 1.91.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.6.

kh

1..1

PU

Exciter field current limiter gain (Kh). Typical Value = 92.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve1, back of commutating reactance (Se[Ve1]). Typical Value = 0.214.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve2, back of commutating reactance (Se[Ve2]). Typical Value = 0.044.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.086.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 9.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 3.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 1.

th

1..1

Seconds

Exciter field current limiter time constant (Th). Typical Value = 0.08.

tj

1..1

Seconds

Exciter field current limiter time constant (Tj). Typical Value = 0.02.

tk

1..1

Seconds

Voltage regulator time constant (Tk). Typical Value = 0.18.

vamax

1..1

PU

Maximum voltage regulator output (Vamax). Typical Value = 75.

vamin

1..1

PU

Minimum voltage regulator output (Vamin). Typical Value = -75.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve1). Typical Value = 7.4.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve2). Typical Value = 5.55.

vfelim

1..1

PU

Exciter field current limit reference (Vfelim). Typical Value = 19.

vhmax

1..1

PU

Maximum field current limiter signal reference (Vhmax). Typical Value = 75.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 44.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = -36.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAC8B

ExcitationSystemDynamics

Modified IEEE AC8B alternator-supplied rectifier excitation system with speed input and input limiter.

Native Members

inlim

1..1

Boolean

Input limiter indicator.
true = input limiter Vimax and Vimin is considered
false = input limiter Vimax and Vimin is not considered.
Typical Value = true.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 1.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 0.55.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (Kd). Typical Value = 1.1.

kdr

1..1

PU

Voltage regulator derivative gain (Kdr). Typical Value = 10.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.

kir

1..1

PU

Voltage regulator integral gain (Kir). Typical Value = 5.

kpr

1..1

PU

Voltage regulator proportional gain (Kpr). Typical Value = 80.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

pidlim

1..1

Boolean

PID limiter indicator.
true = input limiter Vpidmax and Vpidmin is considered
false = input limiter Vpidmax and Vpidmin is not considered.
Typical Value = true.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve1, back of commutating reactance (Se[Ve1]). Typical Value = 0.3.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Ve2, back of commutating reactance (Se[Ve2]). Typical Value = 3.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.

tdr

1..1

Seconds

Lag time constant (Tdr). Typical Value = 0.1.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 1.2.

telim

1..1

Boolean

Selector for the limiter on the block [1/sTe].
See diagram for meaning of true and false.
Typical Value = false.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve1) equals VEMAX (Ve1). Typical Value = 6.5.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve2). Typical Value = 9.

vemin

1..1

PU

Minimum exciter voltage output (Vemin). Typical Value = 0.

vfemax

1..1

PU

Exciter field current limit reference (Vfemax). Typical Value = 6.

vimax

1..1

PU

Input signal maximum (Vimax). Typical Value = 35.

vimin

1..1

PU

Input signal minimum (Vimin). Typical Value = -10.

vpidmax

1..1

PU

PID maximum controller output (Vpidmax). Typical Value = 35.

vpidmin

1..1

PU

PID minimum controller output (Vpidmin). Typical Value = -10.

vrmax

1..1

PU

Input signal maximum (Vimax). Typical Value = 35.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = 0.

vtmult

1..1

Boolean

Multiply by generator's terminal voltage indicator.
true =the limits Vrmax and Vrmin are multiplied by the generator’s terminal voltage to represent a thyristor power stage fed from the generator terminals
false = limits are not multiplied by generator's terminal voltage.
Typical Value = false.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcANS

ExcitationSystemDynamics

Italian excitation system. It represents static field voltage or excitation current feedback excitation system.

Native Members

blint

1..1

Integer

Governor Control Flag (BLINT).
0 = lead-lag regulator
1 = proportional integral regulator.
Typical Value = 0.

ifmn

1..1

PU

Minimum exciter current (IFMN). Typical Value = -5.2.

ifmx

1..1

PU

Maximum exciter current (IFMX). Typical Value = 6.5.

k2

1..1

Simple_Float

Exciter gain (K2). Typical Value = 20.

k3

1..1

Simple_Float

AVR gain (K3). Typical Value = 1000.

kce

1..1

Simple_Float

Ceiling factor (KCE). Typical Value = 1.

krvecc

1..1

Integer

Feedback enabling (KRVECC).
0 = Open loop control
1 = Closed loop control.
Typical Value = 1.

kvfif

1..1

Integer

Rate feedback signal flag (KVFIF).
0 = output voltage of the exciter
1 = exciter field current.
Typical Value = 0.

t1

1..1

Seconds

Time constant (T1). Typical Value = 20.

t2

1..1

Seconds

Time constant (T2). Typical Value = 0.05.

t3

1..1

Seconds

Time constant (T3). Typical Value = 1.6.

tb

1..1

Seconds

Exciter time constant (TB). Typical Value = 0.04.

vrmn

1..1

PU

Maximum AVR output (VRMN). Typical Value = -5.2.

vrmx

1..1

PU

Minimum AVR output (VRMX). Typical Value = 6.5.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAVR1

ExcitationSystemDynamics

Italian excitation system corresponding to IEEE (1968) Type 1 Model. It represents exciter dynamo and electromechanical regulator.

Native Members

e1

1..1

PU

Field voltage value 1 (E1). Typical Value = 4.18.

e2

1..1

PU

Field voltage value 2 (E2). Typical Value = 3.14.

ka

1..1

Simple_Float

AVR gain (KA). Typical Value = 500.

kf

1..1

Simple_Float

Rate feedback gain (KF). Typical Value = 0.02.

se1

1..1

Simple_Float

Saturation factor at E1 (S(E1)). Typical Value = 0.1.

se2

1..1

Simple_Float

Saturation factor at E2 (S(E2)). Typical Value = 0.03.

ta

1..1

Seconds

AVR time constant (TA). Typical Value = 0.2.

tb

1..1

Seconds

AVR time constant (TB). Typical Value = 0.

te

1..1

Seconds

Exciter time constant (TE). Typical Value = 1.

tf

1..1

Seconds

Rate feedback time constant (TF). Typical Value = 1.

vrmn

1..1

PU

Maximum AVR output (VRMN). Typical Value = -6.

vrmx

1..1

PU

Minimum AVR output (VRMX). Typical Value = 7.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAVR2

ExcitationSystemDynamics

Italian excitation system corresponding to IEEE (1968) Type 2 Model. It represents alternator and rotating diodes and electromechanic voltage regulators.

Native Members

e1

1..1

PU

Field voltage value 1 (E1). Typical Value = 4.18.

e2

1..1

PU

Field voltage value 2 (E2). Typical Value = 3.14.

ka

1..1

Simple_Float

AVR gain (KA). Typical Value = 500.

kf

1..1

Simple_Float

Rate feedback gain (KF). Typical Value = 0.02.

se1

1..1

Simple_Float

Saturation factor at E1 (S(E1)). Typical Value = 0.1.

se2

1..1

Simple_Float

Saturation factor at E2 (S(E2)). Typical Value = 0.03.

ta

1..1

Seconds

AVR time constant (TA). Typical Value = 0.02.

tb

1..1

Seconds

AVR time constant (TB). Typical Value = 0.

te

1..1

Seconds

Exciter time constant (TE). Typical Value = 1.

tf1

1..1

Seconds

Rate feedback time constant (TF1). Typical Value = 1.

tf2

1..1

Seconds

Rate feedback time constant (TF2). Typical Value = 1.

vrmn

1..1

PU

Maximum AVR output (VRMN). Typical Value = -6.

vrmx

1..1

PU

Minimum AVR output (VRMX). Typical Value = 7.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAVR3

ExcitationSystemDynamics

Italian excitation system. It represents exciter dynamo and electric regulator.

Native Members

e1

1..1

PU

Field voltage value 1 (E1). Typical Value = 4.18.

e2

1..1

PU

Field voltage value 2 (E2). Typical Value = 3.14.

ka

1..1

Simple_Float

AVR gain (KA). Typical Value = 3000.

se1

1..1

Simple_Float

Saturation factor at E1 (S(E1)). Typical Value = 0.1.

se2

1..1

Simple_Float

Saturation factor at E2 (S(E2)). Typical Value = 0.03.

t1

1..1

Seconds

AVR time constant (T1). Typical Value = 220.

t2

1..1

Seconds

AVR time constant (T2). Typical Value = 1.6.

t3

1..1

Seconds

AVR time constant (T3). Typical Value = 0.66.

t4

1..1

Seconds

AVR time constant (T4). Typical Value = 0.07.

te

1..1

Seconds

Exciter time constant (TE). Typical Value = 1.

vrmn

1..1

PU

Maximum AVR output (VRMN). Typical Value = -7.5.

vrmx

1..1

PU

Minimum AVR output (VRMX). Typical Value = 7.5.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAVR4

ExcitationSystemDynamics

Italian excitation system. It represents static exciter and electric voltage regulator.

Native Members

imul

1..1

Boolean

AVR output voltage dependency selector (Imul).
true = selector is connected
false = selector is not connected.
Typical Value = true.

ka

1..1

Simple_Float

AVR gain (KA). Typical Value = 300.

ke

1..1

Simple_Float

Exciter gain (KE). Typical Value = 1.

kif

1..1

Simple_Float

Exciter internal reactance (KIF). Typical Value = 0.

t1

1..1

Seconds

AVR time constant (T1). Typical Value = 4.8.

t1if

1..1

Seconds

Exciter current feedback time constant (T1IF). Typical Value = 60.

t2

1..1

Seconds

AVR time constant (T2). Typical Value = 1.5.

t3

1..1

Seconds

AVR time constant (T3). Typical Value = 0.

t4

1..1

Seconds

AVR time constant (T4). Typical Value = 0.

tif

1..1

Seconds

Exciter current feedback time constant (TIF). Typical Value = 0.

vfmn

1..1

PU

Minimum exciter output (VFMN). Typical Value = 0.

vfmx

1..1

PU

Maximum exciter output (VFMX). Typical Value = 5.

vrmn

1..1

PU

Maximum AVR output (VRMN). Typical Value = 0.

vrmx

1..1

PU

Minimum AVR output (VRMX). Typical Value = 5.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAVR5

ExcitationSystemDynamics

Manual excitation control with field circuit resistance. This model can be used as a very simple representation of manual voltage control.

Native Members

ka

1..1

PU

Gain (Ka).

rex

1..1

PU

Effective Output Resistance (Rex). Rex represents the effective output resistance seen by the excitation system.

ta

1..1

Seconds

Time constant (Ta).

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcAVR7

ExcitationSystemDynamics

IVO excitation system.

Native Members

a1

1..1

PU

Lead coefficient (A1). Typical Value = 0.5.

a2

1..1

PU

Lag coefficient (A2). Typical Value = 0.5.

a3

1..1

PU

Lead coefficient (A3). Typical Value = 0.5.

a4

1..1

PU

Lag coefficient (A4). Typical Value = 0.5.

a5

1..1

PU

Lead coefficient (A5). Typical Value = 0.5.

a6

1..1

PU

Lag coefficient (A6). Typical Value = 0.5.

k1

1..1

PU

Gain (K1). Typical Value = 1.

k3

1..1

PU

Gain (K3). Typical Value = 3.

k5

1..1

PU

Gain (K5). Typical Value = 1.

t1

1..1

Seconds

Lead time constant (T1). Typical Value = 0.05.

t2

1..1

Seconds

Lag time constant (T2). Typical Value = 0.1.

t3

1..1

Seconds

Lead time constant (T3). Typical Value = 0.1.

t4

1..1

Seconds

Lag time constant (T4). Typical Value = 0.1.

t5

1..1

Seconds

Lead time constant (T5). Typical Value = 0.1.

t6

1..1

Seconds

Lag time constant (T6). Typical Value = 0.1.

vmax1

1..1

PU

Lead-lag max. limit (Vmax1). Typical Value = 5.

vmax3

1..1

PU

Lead-lag max. limit (Vmax3). Typical Value = 5.

vmax5

1..1

PU

Lead-lag max. limit (Vmax5). Typical Value = 5.

vmin1

1..1

PU

Lead-lag min. limit (Vmin1). Typical Value = -5.

vmin3

1..1

PU

Lead-lag min. limit (Vmin3). Typical Value = -5.

vmin5

1..1

PU

Lead-lag min. limit (Vmin5). Typical Value = -2.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcBBC

ExcitationSystemDynamics

Transformer fed static excitation system (static with ABB regulator). This model represents a static excitation system in which a gated thyristor bridge fed by a transformer at the main generator terminals feeds the main generator directly.

Native Members

efdmax

1..1

PU

Maximum open circuit exciter voltage (Efdmax). Typical Value = 5.

efdmin

1..1

PU

Minimum open circuit exciter voltage (Efdmin). Typical Value = -5.

k

1..1

PU

Steady state gain (K). Typical Value = 300.

switch

1..1

Boolean

Supplementary signal routing selector (switch).
true = Vs connected to 3rd summing point
false = Vs connected to 1st summing point (see diagram).
Typical Value = true.

t1

1..1

Seconds

Controller time constant (T1). Typical Value = 6.

t2

1..1

Seconds

Controller time constant (T2). Typical Value = 1.

t3

1..1

Seconds

Lead/lag time constant (T3). Typical Value = 0.05.

t4

1..1

Seconds

Lead/lag time constant (T4). Typical Value = 0.01.

vrmax

1..1

PU

Maximum control element output (Vrmax). Typical Value = 5.

vrmin

1..1

PU

Minimum control element output (Vrmin). Typical Value = -5.

xe

1..1

PU

Effective excitation transformer reactance (Xe). Typical Value = 0.05.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcCZ

ExcitationSystemDynamics

Czech Proportion/Integral Exciter.

Native Members

efdmax

1..1

PU

Exciter output maximum limit (Efdmax).

efdmin

1..1

PU

Exciter output minimum limit (Efdmin).

ka

1..1

PU

Regulator gain (Ka).

ke

1..1

PU

Exciter constant related to self-excited field (Ke).

kp

1..1

PU

Regulator proportional gain (Kp).

ta

1..1

Seconds

Regulator time constant (Ta).

tc

1..1

Seconds

Regulator integral time constant (Tc).

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te).

vrmax

1..1

PU

Voltage regulator maximum limit (Vrmax).

vrmin

1..1

PU

Voltage regulator minimum limit (Vrmin).

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcDC1A

ExcitationSystemDynamics

Modified IEEE DC1A direct current commutator exciter with speed input and without underexcitation limiters (UEL) inputs.

Native Members

edfmax

1..1

PU

Maximum voltage exciter output limiter (Efdmax). Typical Value = 99.

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (Efd1). Typical Value = 3.1.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (Efd2). Typical Value = 2.3.

efdmin

1..1

PU

Minimum voltage exciter output limiter (Efdmin). Typical Value = -99.

exclim

1..1

Boolean

(exclim).
IEEE standard is ambiguous about lower limit on exciter output.
true = a lower limit of zero is applied to integrator output
false = a lower limit of zero is not applied to integrator output.
Typical Value = true.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 46.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 0.

kf

1..1

PU

Excitation control system stabilizer gain (Kf). Typical Value = 0.1.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Efd1 (Se[Eefd1]). Typical Value = 0.33.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Efd1 (Se[Eefd1]). Typical Value = 0.33.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.06.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 0.46.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 1.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 1.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = -0.9.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcDC2A

ExcitationSystemDynamics

Modified IEEE DC2A direct current commutator exciters with speed input, one more leg block in feedback loop and without underexcitation limiters (UEL) inputs. DC type 2 excitation system model with added speed multiplier, added lead-lag, and voltage-dependent limits.

Native Members

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (Efd1). Typical Value = 3.05.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (Efd2). Typical Value = 2.29.

exclim

1..1

Boolean

(exclim). IEEE standard is ambiguous about lower limit on exciter output.
true = a lower limit of zero is applied to integrator output
false = a lower limit of zero is not applied to integrator output.
Typical Value = true.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 300.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). If Ke is entered as zero, the model calculates an effective value of Ke such that the initial condition value of Vr is zero. The zero value of Ke is not changed. If Ke is entered as non-zero, its value is used directly, without change. Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gain (Kf). Typical Value = 0.1.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Efd1 (Se[Eefd1]). Typical Value = 0.279.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Efd2 (Se[Efd2]). Typical Value = 0.117.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.01.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 1.33.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 0.675.

tf1

1..1

Seconds

Excitation control system stabilizer time constant (Tf1). Typical Value = 0.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 4.95.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = -4.9.

vtlim

1..1

Boolean

(Vtlim).
true = limiter at the block [Ka/(1+sTa)] is dependent on Vt
false = limiter at the block is not dependent on Vt.
Typical Value = true.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcDC3A

ExcitationSystemDynamics

This is modified IEEE DC3A direct current commutator exciters with speed input, and death band. DC old type 4.

Native Members

edfmax

1..1

PU

Maximum voltage exciter output limiter (Efdmax). Typical Value = 99.

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (Efd1). Typical Value = 2.6.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (Efd2). Typical Value = 3.45.

efdlim

1..1

Boolean

(Efdlim).
true = exciter output limiter is active
false = exciter output limiter not active.
Typical Value = true.

efdmin

1..1

PU

Minimum voltage exciter output limiter (Efdmin). Typical Value = -99.

exclim

1..1

Boolean

(exclim). IEEE standard is ambiguous about lower limit on exciter output.
true = a lower limit of zero is applied to integrator output
false = a lower limit of zero not applied to integrator output.
Typical Value = true.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.

kr

1..1

PU

Death band (Kr). If Kr is not zero, the voltage regulator input changes at a constant rate if Verr > Kr or Verr < -Kr as per the IEEE (1968) Type 4 model. If Kr is zero, the error signal drives the voltage regulator continuously as per the IEEE (1980) DC3 and IEEE (1992, 2005) DC3A models. Typical Value = 0.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

kv

1..1

PU

Fast raise/lower contact setting (Kv). Typical Value = 0.05.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Efd1 (Se[Eefd1]). Typical Value = 0.1.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, Efd2 (Se[Efd2]). Typical Value = 0.35.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 1.83.

trh

1..1

Seconds

Rheostat travel time (Trh). Typical Value = 20.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 5.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = 0.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcDC3A1

ExcitationSystemDynamics

This is modified old IEEE type 3 excitation system.

Native Members

exclim

1..1

Boolean

(exclim).
true = lower limit of zero is applied to integrator output
false = lower limit of zero not applied to integrator output.
Typical Value = true.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 300.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gain (Kf). Typical Value = 0.1.

ki

1..1

PU

Potential circuit gain coefficient (Ki). Typical Value = 4.83.

kp

1..1

PU

Potential circuit gain coefficient (Kp). Typical Value = 4.37.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.01.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 1.83.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 0.675.

vb1max

1..1

PU

Available exciter voltage limiter (Vb1max). Typical Value = 11.63.

vblim

1..1

Boolean

Vb limiter indicator.
true = exciter Vbmax limiter is active
false = Vb1max is active.
Typical Value = true.

vbmax

1..1

PU

Available exciter voltage limiter (Vbmax). Typical Value = 11.63.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 5.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = 0.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcELIN1

ExcitationSystemDynamics

Static PI transformer fed excitation system: ELIN (VATECH) - simplified model. This model represents an all-static excitation system. A PI voltage controller establishes a desired field current set point for a proportional current controller. The integrator of the PI controller has a follow-up input to match its signal to the present field current. A power system stabilizer with power input is included in the model.

Native Members

dpnf

1..1

PU

Controller follow up dead band (Dpnf). Typical Value = 0.

efmax

1..1

PU

Maximum open circuit excitation voltage (Efmax). Typical Value = 5.

efmin

1..1

PU

Minimum open circuit excitation voltage (Efmin). Typical Value = -5.

ks1

1..1

PU

Stabilizer Gain 1 (Ks1). Typical Value = 0.

ks2

1..1

PU

Stabilizer Gain 2 (Ks2). Typical Value = 0.

smax

1..1

PU

Stabilizer Limit Output (smax). Typical Value = 0.1.

tfi

1..1

Seconds

Current transducer time constant (Tfi). Typical Value = 0.

tnu

1..1

Seconds

Controller reset time constant (Tnu). Typical Value = 2.

ts1

1..1

Seconds

Stabilizer Phase Lag Time Constant (Ts1). Typical Value = 1.

ts2

1..1

Seconds

Stabilizer Filter Time Constant (Ts2). Typical Value = 1.

tsw

1..1

Seconds

Stabilizer parameters (Tsw). Typical Value = 3.

vpi

1..1

PU

Current controller gain (Vpi). Typical Value = 12.45.

vpnf

1..1

PU

Controller follow up gain (Vpnf). Typical Value = 2.

vpu

1..1

PU

Voltage controller proportional gain (Vpu). Typical Value = 34.5.

xe

1..1

PU

Excitation transformer effective reactance (Xe) (>=0). Xe represents the regulation of the transformer/rectifier unit. Typical Value = 0.06.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcELIN2

ExcitationSystemDynamics

Detailed Excitation System Model - ELIN (VATECH). This model represents an all-static excitation system. A PI voltage controller establishes a desired field current set point for a proportional current controller. The integrator of the PI controller has a follow-up input to match its signal to the present field current. Power system stabilizer models used in conjunction with this excitation system model: PssELIN2, PssIEEE2B, Pss2B.

Native Members

efdbas

1..1

PU

Gain (Efdbas). Typical Value = 0.1.

iefmax

1..1

PU

Limiter (Iefmax). Typical Value = 1.

iefmax2

1..1

PU

Minimum open circuit excitation voltage (Iefmax2). Typical Value = -5.

iefmin

1..1

PU

Limiter (Iefmin). Typical Value = 1.

k1

1..1

PU

Voltage regulator input gain (K1). Typical Value = 0.

k1ec

1..1

PU

Voltage regulator input limit (K1ec). Typical Value = 2.

k2

1..1

PU

Gain (K2). Typical Value = 5.

k3

1..1

PU

Gain (K3). Typical Value = 0.1.

k4

1..1

PU

Gain (K4). Typical Value = 0.

kd1

1..1

PU

Voltage controller derivative gain (Kd1). Typical Value = 34.5.

ke2

1..1

PU

Gain (Ke2). Typical Value = 0.1.

ketb

1..1

PU

Gain (Ketb). Typical Value = 0.06.

pid1max

1..1

PU

Controller follow up gain (PID1max). Typical Value = 2.

seve1

1..1

PU

Exciter saturation function value at the corresponding exciter voltage, Ve1, back of commutating reactance (Se[Ve1]). Typical Value = 0.

seve2

1..1

PU

Exciter saturation function value at the corresponding exciter voltage, Ve2, back of commutating reactance (Se[Ve2]). Typical Value = 1.

tb1

1..1

Seconds

Voltage controller derivative washout time constant (Tb1). Typical Value = 12.45.

te

1..1

Seconds

Time constant (Te). Typical Value = 0.

te2

1..1

Seconds

Time Constant (Te2). Typical Value = 1.

ti1

1..1

PU

Controller follow up dead band (Ti1). Typical Value = 0.

ti3

1..1

Seconds

Time constant (Ti3). Typical Value = 3.

ti4

1..1

Seconds

Time constant (Ti4). Typical Value = 0.

tr4

1..1

Seconds

Time constant (Tr4). Typical Value = 1.

upmax

1..1

PU

Limiter (Upmax). Typical Value = 3.

upmin

1..1

PU

Limiter (Upmin). Typical Value = 0.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve1). Typical Value = 3.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (Ve2). Typical Value = 0.

xp

1..1

PU

Excitation transformer effective reactance (Xp). Typical Value = 1.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcHU

ExcitationSystemDynamics

Hungarian Excitation System Model, with built-in voltage transducer.

Native Members

ae

1..1

PU

Major loop PI tag gain factor (Ae). Typical Value = 3.

ai

1..1

PU

Minor loop PI tag gain factor (Ai). Typical Value = 22.

atr

1..1

PU

AVR constant (Atr). Typical Value = 2.19.

emax

1..1

PU

Field voltage control signal upper limit on AVR base (Emax). Typical Value = 0.996.

emin

1..1

PU

Field voltage control signal lower limit on AVR base (Emin). Typical Value = -0.866.

imax

1..1

PU

Major loop PI tag output signal upper limit (Imax). Typical Value = 2.19.

imin

1..1

PU

Major loop PI tag output signal lower limit (Imin). Typical Value = 0.1.

ke

1..1

Simple_Float

Voltage base conversion constant (Ke). Typical Value = 4.666.

ki

1..1

Simple_Float

Current base conversion constant (Ki). Typical Value = 0.21428.

te

1..1

Seconds

Major loop PI tag integration time constant (Te). Typical Value = 0.154.

ti

1..1

Seconds

Minor loop PI control tag integration time constant (Ti). Typical Value = 0.01333.

tr

1..1

Seconds

Filter time constant (Tr). If a voltage compensator is used in conjunction with this excitation system model, Tr should be set to 0. Typical Value = 0.01.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEAC1A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type AC1A model. The model represents the field-controlled alternator-rectifier excitation systems designated Type AC1A. These excitation systems consist of an alternator main exciter with non-controlled rectifiers.

Reference: IEEE Standard 421.5-2005 Section 6.1.

Native Members

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 400.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.2.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (KD). Typical Value = 0.38.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (KF). Typical Value = 0.03.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE1, back of commutating reactance (SE[VE1]). Typical Value = 0.1.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE2, back of commutating reactance (SE[VE2]). Typical Value = 0.03.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.02.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 0.8.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 1.

vamax

1..1

PU

Maximum voltage regulator output (VAMAX). Typical Value = 14.5.

vamin

1..1

PU

Minimum voltage regulator output (VAMIN). Typical Value = -14.5.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE1). Typical Value = 4.18.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE2). Typical Value = 3.14.

vrmax

1..1

PU

Maximum voltage regulator outputs (VRMAX). Typical Value = 6.03.

vrmin

1..1

PU

Minimum voltage regulator outputs (VRMIN). Typical Value = -5.43.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEAC2A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type AC2A model. The model represents a high initial response field-controlled alternator-rectifier excitation system. The alternator main exciter is used with non-controlled rectifiers. The Type AC2A model is similar to that of Type AC1A except for the inclusion of exciter time constant compensation and exciter field current limiting elements.

Reference: IEEE Standard 421.5-2005 Section 6.2.

Native Members

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 400.

kb

1..1

PU

Second stage regulator gain (KB). Typical Value = 25.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.28.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (KD). Typical Value = 0.35.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (KF). Typical Value = 0.03.

kh

1..1

PU

Exciter field current feedback gain (KH). Typical Value = 1.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE1, back of commutating reactance (SE[VE1]). Typical Value = 0.037.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE2, back of commutating reactance (SE[VE2]). Typical Value = 0.012.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.02.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 0.6.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 1.

vamax

1..1

PU

Maximum voltage regulator output (VAMAX). Typical Value = 8.

vamin

1..1

PU

Minimum voltage regulator output (VAMIN). Typical Value = -8.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE1). Typical Value = 4.4.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE2). Typical Value = 3.3.

vfemax

1..1

PU

Exciter field current limit reference (VFEMAX). Typical Value = 4.4.

vrmax

1..1

PU

Maximum voltage regulator outputs (VRMAX). Typical Value = 105.

vrmin

1..1

PU

Minimum voltage regulator outputs (VRMIN). Typical Value = -95.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEAC3A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type AC3A model. The model represents the field-controlled alternator-rectifier excitation systems designated Type AC3A. These excitation systems include an alternator main exciter with non-controlled rectifiers. The exciter employs self-excitation, and the voltage regulator power is derived from the exciter output voltage. Therefore, this system has an additional nonlinearity, simulated by the use of a multiplier
whose inputs are the voltage regulator command signal, Va, and the exciter output voltage, Efd, times KR. This model is applicable to excitation systems employing static voltage regulators.


Reference: IEEE Standard 421.5-2005 Section 6.3.

Native Members

efdn

1..1

PU

Value of EFD at which feedback gain changes (EFDN). Typical Value = 2.36.

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 45.62.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.104.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (KD). Typical Value = 0.499.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (KF). Typical Value = 0.143.

klv

1..1

PU

Gain used in the minimum field voltage limiter loop (KLV). Typical Value = 0.194.

kn

1..1

PU

Excitation control system stabilizer gain (KN). Typical Value = 0.05.

kr

1..1

PU

Constant associated with regulator and alternator field power supply (KR). Typical Value = 3.77.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE1, back of commutating reactance (SE[VE1]). Typical Value = 1.143.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE2, back of commutating reactance (SE[VE2]). Typical Value = 0.1.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.013.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 1.17.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 1.

vamax

1..1

PU

Maximum voltage regulator output (VAMAX). Typical Value = 1.

vamin

1..1

PU

Minimum voltage regulator output (VAMIN). Typical Value = -0.95.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE1) equals VEMAX (VE1). Typical Value = 6.24.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE2). Typical Value = 4.68.

vemin

1..1

PU

Minimum exciter voltage output (VEMIN). Typical Value = 0.1.

vfemax

1..1

PU

Exciter field current limit reference (VFEMAX). Typical Value = 16.

vlv

1..1

PU

Field voltage used in the minimum field voltage limiter loop (VLV). Typical Value = 0.79.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEAC4A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type AC4A model. The model represents type AC4A alternator-supplied controlled-rectifier excitation system which is quite different from the other type ac systems. This high initial response excitation system utilizes a full thyristor bridge in the exciter output circuit. The voltage regulator controls the firing of the thyristor bridges. The exciter alternator uses an independent voltage regulator to control its output voltage to a constant value. These effects are not modeled; however, transient loading effects on the exciter alternator are included.


Reference: IEEE Standard 421.5-2005 Section 6.4.

Native Members

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 200.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.015.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 10.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 1.

vimax

1..1

PU

Maximum voltage regulator input limit (VIMAX). Typical Value = 10.

vimin

1..1

PU

Minimum voltage regulator input limit (VIMIN). Typical Value = -10.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 5.64.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -4.53.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEAC5A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type AC5A model. The model represents a simplified model for brushless excitation systems. The regulator is supplied from a source, such as a permanent magnet generator, which is not affected by system disturbances. Unlike other ac models, this model uses loaded rather than open circuit exciter saturation data in the same way as it is used for the dc models. Because the model has been widely implemented by the industry, it is sometimes used to represent other types of systems when either detailed data for them are not available or simplified models are required.


Reference: IEEE Standard 421.5-2005 Section 6.5.

Native Members

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD1). Typical Value = 5.6.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD2). Typical Value = 4.2.

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 400.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (KF). Typical Value = 0.03.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD1 (SE[EFD1]). Typical Value = 0.86.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD2 (SE[EFD2]). Typical Value = 0.5.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.02.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 0.8.

tf1

1..1

Seconds

Excitation control system stabilizer time constant (TF1). Typical Value = 1.

tf2

1..1

Seconds

Excitation control system stabilizer time constant (TF2). Typical Value = 1.

tf3

1..1

Seconds

Excitation control system stabilizer time constant (TF3). Typical Value = 1.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 7.3.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -7.3.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEAC6A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type AC6A model. The model represents field-controlled alternator-rectifier excitation systems with system-supplied electronic voltage regulators. The maximum output of the regulator, VR, is a function of terminal voltage, VT. The field current limiter included in the original model AC6A remains in the 2005 update.

Reference: IEEE Standard 421.5-2005 Section 6.6.

Native Members

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 536.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.173.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (KD). Typical Value = 1.91.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.6.

kh

1..1

PU

Exciter field current limiter gain (KH). Typical Value = 92.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE1, back of commutating reactance (SE[VE1]). Typical Value = 0.214.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE2, back of commutating reactance (SE[VE2]). Typical Value = 0.044.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.086.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 9.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 3.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 1.

th

1..1

Seconds

Exciter field current limiter time constant (TH). Typical Value = 0.08.

tj

1..1

Seconds

Exciter field current limiter time constant (TJ). Typical Value = 0.02.

tk

1..1

Seconds

Voltage regulator time constant (TK). Typical Value = 0.18.

vamax

1..1

PU

Maximum voltage regulator output (VAMAX). Typical Value = 75.

vamin

1..1

PU

Minimum voltage regulator output (VAMIN). Typical Value = -75.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE1) equals VEMAX (VE1). Typical Value = 7.4.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE2). Typical Value = 5.55.

vfelim

1..1

PU

Exciter field current limit reference (VFELIM). Typical Value = 19.

vhmax

1..1

PU

Maximum field current limiter signal reference (VHMAX). Typical Value = 75.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 44.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -36.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEAC7B

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type AC7B model. The model represents excitation systems which consist of an ac alternator with either stationary or rotating rectifiers to produce the dc field requirements. It is an upgrade to earlier ac excitation systems, which replace only the controls but retain the ac alternator and diode rectifier bridge.

Reference: IEEE Standard 421.5-2005 Section 6.7.

Note: In the IEEE Standard 421.5 – 2005, the [1 / sTE] block is shown as [1 / (1 + sTE)], which is incorrect.

Native Members

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.18.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (KD). Typical Value = 0.02.

kdr

1..1

PU

Voltage regulator derivative gain (KDR). Typical Value = 0.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kf1

1..1

PU

Excitation control system stabilizer gain (KF1). Typical Value = 0.212.

kf2

1..1

PU

Excitation control system stabilizer gain (KF2). Typical Value = 0.

kf3

1..1

PU

Excitation control system stabilizer gain (KF3). Typical Value = 0.

kia

1..1

PU

Voltage regulator integral gain (KIA). Typical Value = 59.69.

kir

1..1

PU

Voltage regulator integral gain (KIR). Typical Value = 4.24.

kl

1..1

PU

Exciter field voltage lower limit parameter (KL). Typical Value = 10.

kp

1..1

PU

Potential circuit gain coefficient (KP). Typical Value = 4.96.

kpa

1..1

PU

Voltage regulator proportional gain (KPA). Typical Value = 65.36.

kpr

1..1

PU

Voltage regulator proportional gain (KPR). Typical Value = 4.24.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE1, back of commutating reactance (SE[VE1]). Typical Value = 0.44.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE2, back of commutating reactance (SE[VE2]). Typical Value = 0.075.

tdr

1..1

Seconds

Lag time constant (TDR). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 1.1.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 1.

vamax

1..1

PU

Maximum voltage regulator output (VAMAX). Typical Value = 1.

vamin

1..1

PU

Minimum voltage regulator output (VAMIN). Typical Value = -0.95.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE1) equals VEMAX (VE1). Typical Value = 6.3.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE2). Typical Value = 3.02.

vemin

1..1

PU

Minimum exciter voltage output (VEMIN). Typical Value = 0.

vfemax

1..1

PU

Exciter field current limit reference (VFEMAX). Typical Value = 6.9.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 5.79.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -5.79.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEAC8B

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type AC8B model. This model represents a PID voltage regulator with either a brushless exciter or dc exciter. The AVR in this model consists of PID control, with separate constants for the proportional (KPR), integral (KIR), and derivative (KDR) gains. The representation of the brushless exciter (TE, KE, SE, KC, KD) is similar to the model Type AC2A. The Type AC8B model can be used to represent static voltage regulators applied to brushless excitation systems. Digitally based voltage regulators feeding dc rotating main exciters can be represented with the AC Type AC8B model with the parameters KC and KD set to 0. For thyristor power stages fed from the generator terminals, the limits VRMAX and VRMIN should be a function of terminal voltage: VT * VRMAX and VT * VRMIN.


Reference: IEEE Standard 421.5-2005 Section 6.8.

Native Members

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 1.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.55.

kd

1..1

PU

Demagnetizing factor, a function of exciter alternator reactances (KD). Typical Value = 1.1.

kdr

1..1

PU

Voltage regulator derivative gain (KDR). Typical Value = 10.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kir

1..1

PU

Voltage regulator integral gain (KIR). Typical Value = 5.

kpr

1..1

PU

Voltage regulator proportional gain (KPR). Typical Value = 80.

seve1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE1, back of commutating reactance (SE[VE1]). Typical Value = 0.3.

seve2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, VE2, back of commutating reactance (SE[VE2]). Typical Value = 3.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.

tdr

1..1

Seconds

Lag time constant (TDR). Typical Value = 0.1.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 1.2.

ve1

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE1) equals VEMAX (VE1). Typical Value = 6.5.

ve2

1..1

PU

Exciter alternator output voltages back of commutating reactance at which saturation is defined (VE2). Typical Value = 9.

vemin

1..1

PU

Minimum exciter voltage output (VEMIN). Typical Value = 0.

vfemax

1..1

PU

Exciter field current limit reference (VFEMAX). Typical Value = 6.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 35.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = 0.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEDC1A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type DC1A model. This model represents field-controlled dc commutator exciters with continuously acting voltage regulators (especially the direct-acting rheostatic, rotating amplifier, and magnetic amplifier types). Because this model has been widely implemented by the industry, it is sometimes used to represent other types of systems when detailed data for them are not available or when a simplified model is required.


Reference: IEEE Standard 421.5-2005 Section 5.1.

Native Members

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD1). Typical Value = 3.1.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD2). Typical Value = 2.3.

exclim

1..1

Boolean

(exclim). IEEE standard is ambiguous about lower limit on exciter output.
true = a lower limit of zero is applied to integrator output
false = a lower limit of zero is not applied to integrator output.
Typical Value = true.

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 46.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 0.

kf

1..1

PU

Excitation control system stabilizer gain (KF). Typical Value = 0.1.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD1 (SE[EFD1]). Typical Value = 0.33.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD2 (SE[EFD2]). Typical Value = 0.1.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.06.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 0.46.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 1.

uelin

1..1

Boolean

UEL input (uelin).
true = input is connected to the HV gate
false = input connects to the error signal.
Typical Value = true.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 1.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -0.9.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEDC2A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type DC2A model. This model represents represent field-controlled dc commutator exciters with continuously acting voltage regulators having supplies obtained from the generator or auxiliary bus. It differs from the Type DC1A model only in the voltage regulator output limits, which are now proportional to terminal voltage VT.
It is representative of solid-state replacements for various forms of older mechanical and rotating amplifier regulating equipment connected to dc commutator exciters.

Reference: IEEE Standard 421.5-2005 Section 5.2.

Native Members

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD1). Typical Value = 3.05.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD2). Typical Value = 2.29.

exclim

1..1

Boolean

(exclim). IEEE standard is ambiguous about lower limit on exciter output.
true = a lower limit of zero is applied to integrator output
false = a lower limit of zero is not applied to integrator output.
Typical Value = true.

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 300.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gain (KF). Typical Value = 0.1.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD1 (SE[EFD1]). Typical Value = 0.279.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD2 (SE[EFD2]). Typical Value = 0.117.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.01.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 1.33.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 0.675.

uelin

1..1

Boolean

UEL input (uelin).
true = input is connected to the HV gate
false = input connects to the error signal.
Typical Value = true.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 4.95.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -4.9.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEDC3A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type DC3A model. This model represents represent older systems, in particular those dc commutator exciters with non-continuously acting regulators that were commonly used before the development of the continuously acting varieties. These systems respond at basically two different rates, depending upon the magnitude of voltage error. For small errors, adjustment is made periodically with a signal to a motor-operated rheostat. Larger errors cause resistors to be quickly shorted or inserted and a strong forcing signal applied to the exciter. Continuous motion of the motor-operated rheostat occurs for these larger error signals, even though it is bypassed by contactor action.


Reference: IEEE Standard 421.5-2005 Section 5.3.

Native Members

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD1). Typical Value = 3.375.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD2). Typical Value = 3.15.

exclim

1..1

Boolean

(exclim). IEEE standard is ambiguous about lower limit on exciter output.
true = a lower limit of zero is applied to integrator output
false = a lower limit of zero is not applied to integrator output.
Typical Value = true.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 0.05.

kv

1..1

PU

Fast raise/lower contact setting (KV). Typical Value = 0.05.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD1 (SE[EFD1]). Typical Value = 0.267.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD2 (SE[EFD2]). Typical Value = 0.068.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 0.5.

trh

1..1

Seconds

Rheostat travel time (TRH). Typical Value = 20.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 1.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = 0.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEDC4B

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type DC4B model. These excitation systems utilize a field-controlled dc commutator exciter with a continuously acting voltage regulator having supplies obtained from the generator or auxiliary bus.

Reference: IEEE Standard 421.5-2005 Section 5.4.

Native Members

efd1

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD1). Typical Value = 1.75.

efd2

1..1

PU

Exciter voltage at which exciter saturation is defined (EFD2). Typical Value = 2.33.

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 1.

kd

1..1

PU

Regulator derivative gain (KD). Typical Value = 20.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gain (KF). Typical Value = 0.

ki

1..1

PU

Regulator integral gain (KI). Typical Value = 20.

kp

1..1

PU

Regulator proportional gain (KP). Typical Value = 20.

oelin

1..1

Boolean

OEL input (OELin).
true = LV gate
false = subtract from error signal.
Typical Value = true.

seefd1

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD1 (SE[EFD1]). Typical Value = 0.08.

seefd2

1..1

Simple_Float

Exciter saturation function value at the corresponding exciter voltage, EFD2 (SE[EFD2]). Typical Value = 0.27.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.2.

td

1..1

Seconds

Regulator derivative filter time constant(TD). Typical Value = 0.01.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 0.8.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 1.

uelin

1..1

Boolean

UEL input (UELin).
true = HV gate
false = add to error signal.
Typical Value = true.

vemin

1..1

PU

Minimum exciter voltage output(VEMIN). Typical Value = 0.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 2.7.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -0.9.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEST1A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type ST1A model. This model represents systems in which excitation power is supplied through a transformer from the generator terminals (or the unit’s auxiliary bus) and is regulated by a controlled rectifier. The maximum exciter voltage available from such systems is directly related to the generator terminal voltage.

Reference: IEEE Standard 421.5-2005 Section 7.1.

Native Members

ilr

1..1

PU

Exciter output current limit reference (ILR). Typical Value = 0.

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 190.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.08.

kf

1..1

PU

Excitation control system stabilizer gains (KF). Typical Value = 0.

klr

1..1

PU

Exciter output current limiter gain (KLR). Typical Value = 0.

pssin

1..1

Boolean

Selector of the Power System Stabilizer (PSS) input (PSSin).
true = PSS input (Vs) added to error signal
false = PSS input (Vs) added to voltage regulator output.
Typical Value = true.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 10.

tb1

1..1

Seconds

Voltage regulator time constant (TB1). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 1.

tc1

1..1

Seconds

Voltage regulator time constant (TC1). Typical Value = 0.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 1.

uelin

1..1

ExcIEEEST1AUELselectorKind

Selector of the connection of the UEL input (UELin). Typical Value = ignoreUELsignal.

vamax

1..1

PU

Maximum voltage regulator output (VAMAX). Typical Value = 14.5.

vamin

1..1

PU

Minimum voltage regulator output (VAMIN). Typical Value = -14.5.

vimax

1..1

PU

Maximum voltage regulator input limit (VIMAX). Typical Value = 999.

vimin

1..1

PU

Minimum voltage regulator input limit (VIMIN). Typical Value = -999.

vrmax

1..1

PU

Maximum voltage regulator outputs (VRMAX). Typical Value = 7.8.

vrmin

1..1

PU

Minimum voltage regulator outputs (VRMIN). Typical Value = -6.7.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEST2A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type ST2A model. Some static systems utilize both current and voltage sources (generator terminal quantities) to comprise the power source. The regulator controls the exciter output through controlled saturation of the power transformer components. These compound-source rectifier excitation systems are designated Type ST2A and are represented by ExcIEEEST2A.

Reference: IEEE Standard 421.5-2005 Section 7.2.

Native Members

efdmax

1..1

PU

Maximum field voltage (EFDMax). Typical Value = 99.

ka

1..1

PU

Voltage regulator gain (KA). Typical Value = 120.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 1.82.

ke

1..1

PU

Exciter constant related to self-excited field (KE). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (KF). Typical Value = 0.05.

ki

1..1

PU

Potential circuit gain coefficient (KI). Typical Value = 8.

kp

1..1

PU

Potential circuit gain coefficient (KP). Typical Value = 4.88.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.15.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (TE). Typical Value = 0.5.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value = 1.

uelin

1..1

Boolean

UEL input (UELin).
true = HV gate
false = add to error signal.
Typical Value = true.

vrmax

1..1

PU

Maximum voltage regulator outputs (VRMAX). Typical Value = 1.

vrmin

1..1

PU

Minimum voltage regulator outputs (VRMIN). Typical Value = 0.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEST3A

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type ST3A model. Some static systems utilize a field voltage control loop to linearize the exciter control characteristic. This also makes the output independent of supply source variations until supply limitations are reached. These systems utilize a variety of controlled-rectifier designs: full thyristor complements or hybrid bridges
in either series or shunt configurations. The power source may consist of only a potential source, either fed from the machine terminals or from internal windings. Some designs may have compound power sources utilizing both machine potential and current. These power sources are represented as phasor combinations of machine terminal current and voltage and are accommodated by suitable parameters in model Type ST3A which is represented by ExcIEEEST3A.


Reference: IEEE Standard 421.5-2005 Section 7.3.

Native Members

ka

1..1

PU

Voltage regulator gain (KA). This is parameter K in the IEEE Std. Typical Value = 200.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.2.

kg

1..1

PU

Feedback gain constant of the inner loop field regulator (KG). Typical Value = 1.

ki

1..1

PU

Potential circuit gain coefficient (KI). Typical Value = 0.

km

1..1

PU

Forward gain constant of the inner loop field regulator (KM). Typical Value = 7.93.

kp

1..1

PU

Potential circuit gain coefficient (KP). Typical Value = 6.15.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.

tb

1..1

Seconds

Voltage regulator time constant (TB). Typical Value = 10.

tc

1..1

Seconds

Voltage regulator time constant (TC). Typical Value = 1.

thetap

1..1

AngleDegrees

Potential circuit phase angle (thetap). Typical Value = 0.

tm

1..1

Seconds

Forward time constant of inner loop field regulator (TM). Typical Value = 0.4.

vbmax

1..1

PU

Maximum excitation voltage (VBMax). Typical Value = 6.9.

vgmax

1..1

PU

Maximum inner loop feedback voltage (VGMax). Typical Value = 5.8.

vimax

1..1

PU

Maximum voltage regulator input limit (VIMAX). Typical Value = 0.2.

vimin

1..1

PU

Minimum voltage regulator input limit (VIMIN). Typical Value = -0.2.

vmmax

1..1

PU

Maximum inner loop output (VMMax). Typical Value = 1.

vmmin

1..1

PU

Minimum inner loop output (VMMin). Typical Value = 0.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 10.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -10.

xl

1..1

PU

Reactance associated with potential source (XL). Typical Value = 0.081.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEST4B

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type ST4B model. This model is a variation of the Type ST3A model, with a proportional plus integral (PI) regulator block replacing the lag-lead regulator characteristic that is in the ST3A model. Both potential and compound source rectifier excitation systems are modeled. The PI regulator blocks have non-windup limits that are represented. The voltage regulator of this model is typically implemented digitally.

Reference: IEEE Standard 421.5-2005 Section 7.4.

Native Members

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (KC). Typical Value = 0.113.

kg

1..1

PU

Feedback gain constant of the inner loop field regulator (KG). Typical Value = 0.

ki

1..1

PU

Potential circuit gain coefficient (KI). Typical Value = 0.

kim

1..1

PU

Voltage regulator integral gain output (KIM). Typical Value = 0.

kir

1..1

PU

Voltage regulator integral gain (KIR). Typical Value = 10.75.

kp

1..1

PU

Potential circuit gain coefficient (KP). Typical Value = 9.3.

kpm

1..1

PU

Voltage regulator proportional gain output (KPM). Typical Value = 1.

kpr

1..1

PU

Voltage regulator proportional gain (KPR). Typical Value = 10.75.

ta

1..1

Seconds

Voltage regulator time constant (TA). Typical Value = 0.02.

thetap

1..1

AngleDegrees

Potential circuit phase angle (thetap). Typical Value = 0.

vbmax

1..1

PU

Maximum excitation voltage (VBMax). Typical Value = 11.63.

vmmax

1..1

PU

Maximum inner loop output (VMMax). Typical Value = 99.

vmmin

1..1

PU

Minimum inner loop output (VMMin). Typical Value = -99.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 1.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -0.87.

xl

1..1

PU

Reactance associated with potential source (XL). Typical Value = 0.124.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEST5B

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type ST5B model. The Type ST5B excitation system is a variation of the Type ST1A model, with alternative overexcitation and underexcitation inputs and additional limits.

Reference: IEEE Standard 421.5-2005 Section 7.5.

Native Members

kc

1..1

PU

Rectifier regulation factor (KC). Typical Value = 0.004.

kr

1..1

PU

Regulator gain (KR). Typical Value = 200.

t1

1..1

Seconds

Firing circuit time constant (T1). Typical Value = 0.004.

tb1

1..1

Seconds

Regulator lag time constant (TB1). Typical Value = 6.

tb2

1..1

Seconds

Regulator lag time constant (TB2). Typical Value = 0.01.

tc1

1..1

Seconds

Regulator lead time constant (TC1). Typical Value = 0.8.

tc2

1..1

Seconds

Regulator lead time constant (TC2). Typical Value = 0.08.

tob1

1..1

Seconds

OEL lag time constant (TOB1). Typical Value = 2.

tob2

1..1

Seconds

OEL lag time constant (TOB2). Typical Value = 0.08.

toc1

1..1

Seconds

OEL lead time constant (TOC1). Typical Value = 0.1.

toc2

1..1

Seconds

OEL lead time constant (TOC2). Typical Value = 0.08.

tub1

1..1

Seconds

UEL lag time constant (TUB1). Typical Value = 10.

tub2

1..1

Seconds

UEL lag time constant (TUB2). Typical Value = 0.05.

tuc1

1..1

Seconds

UEL lead time constant (TUC1). Typical Value = 2.

tuc2

1..1

Seconds

UEL lead time constant (TUC2). Typical Value = 0.1.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 5.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -4.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEST6B

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type ST6B model. This model consists of a PI voltage regulator with an inner loop field voltage regulator and pre-control. The field voltage regulator implements a proportional control. The pre-control and the delay in the feedback circuit increase the dynamic response.

Reference: IEEE Standard 421.5-2005 Section 7.6.

Native Members

ilr

1..1

PU

Exciter output current limit reference (ILR). Typical Value = 4.164.

kci

1..1

PU

Exciter output current limit adjustment (KCI). Typical Value = 1.0577.

kff

1..1

PU

Pre-control gain constant of the inner loop field regulator (KFF). Typical Value = 1.

kg

1..1

PU

Feedback gain constant of the inner loop field regulator (KG). Typical Value = 1.

kia

1..1

PU

Voltage regulator integral gain (KIA). Typical Value = 45.094.

klr

1..1

PU

Exciter output current limiter gain (KLR). Typical Value = 17.33.

km

1..1

PU

Forward gain constant of the inner loop field regulator (KM). Typical Value = 1.

kpa

1..1

PU

Voltage regulator proportional gain (KPA). Typical Value = 18.038.

oelin

1..1

ExcST6BOELselectorKind

OEL input selector (OELin). Typical Value = noOELinput.

tg

1..1

Seconds

Feedback time constant of inner loop field voltage regulator (TG). Typical Value = 0.02.

vamax

1..1

PU

Maximum voltage regulator output (VAMAX). Typical Value = 4.81.

vamin

1..1

PU

Minimum voltage regulator output (VAMIN). Typical Value = -3.85.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 4.81.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -3.85.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcIEEEST7B

ExcitationSystemDynamics

The class represents IEEE Std 421.5-2005 type ST7B model. This model is representative of static potential-source excitation systems. In this system, the AVR consists of a PI voltage regulator. A phase lead-lag filter in series allows introduction of a derivative function, typically used with brushless excitation systems. In that case, the regulator is of the PID type. In addition, the terminal voltage channel includes a phase lead-lag filter. The AVR includes the appropriate inputs on its reference for overexcitation limiter (OEL1), underexcitation limiter (UEL), stator current limiter (SCL), and current compensator (DROOP). All these limitations, when they work at voltage reference level, keep the PSS (VS signal from Type PSS1A, PSS2A, or PSS2B) in operation. However, the UEL limitation can also be transferred to the high value (HV) gate acting on the output signal. In addition, the output signal passes through a low value (LV) gate for a ceiling overexcitation limiter (OEL2).

Reference: IEEE Standard 421.5-2005 Section 7.7.

Native Members

kh

1..1

PU

High-value gate feedback gain (KH). Typical Value 1.

kia

1..1

PU

Voltage regulator integral gain (KIA). Typical Value = 1.

kl

1..1

PU

Low-value gate feedback gain (KL). Typical Value 1.

kpa

1..1

PU

Voltage regulator proportional gain (KPA). Typical Value = 40.

oelin

1..1

ExcST7BOELselectorKind

OEL input selector (OELin). Typical Value = noOELinput.

tb

1..1

Seconds

Regulator lag time constant (TB). Typical Value 1.

tc

1..1

Seconds

Regulator lead time constant (TC). Typical Value 1.

tf

1..1

Seconds

Excitation control system stabilizer time constant (TF). Typical Value 1.

tg

1..1

Seconds

Feedback time constant of inner loop field voltage regulator (TG). Typical Value 1.

tia

1..1

Seconds

Feedback time constant (TIA). Typical Value = 3.

uelin

1..1

ExcST7BUELselectorKind

UEL input selector (UELin). Typical Value = noUELinput.

vmax

1..1

PU

Maximum voltage reference signal (VMAX). Typical Value = 1.1.

vmin

1..1

PU

Minimum voltage reference signal (VMIN). Typical Value = 0.9.

vrmax

1..1

PU

Maximum voltage regulator output (VRMAX). Typical Value = 5.

vrmin

1..1

PU

Minimum voltage regulator output (VRMIN). Typical Value = -4.5.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcitationSystemUserDefined

UserDefinedModels

Excitation system function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcOEX3T

ExcitationSystemDynamics

Modified IEEE Type ST1 Excitation System with semi-continuous and acting terminal voltage limiter.

Native Members

e1

1..1

PU

Saturation parameter (E1).

e2

1..1

PU

Saturation parameter (E2).

ka

1..1

PU

Gain (KA).

kc

1..1

PU

Gain (KC).

kd

1..1

PU

Gain (KD).

ke

1..1

PU

Gain (KE).

kf

1..1

PU

Gain (KF).

see1

1..1

PU

Saturation parameter (SE(E1)).

see2

1..1

PU

Saturation parameter (SE(E2)).

t1

1..1

Seconds

Time constant (T1).

t2

1..1

Seconds

Time constant (T2).

t3

1..1

Seconds

Time constant (T3).

t4

1..1

Seconds

Time constant (T4).

t5

1..1

Seconds

Time constant (T5).

t6

1..1

Seconds

Time constant (T6).

te

1..1

Seconds

Time constant (TE).

tf

1..1

Seconds

Time constant (TF).

vrmax

1..1

PU

Limiter (VRMAX).

vrmin

1..1

PU

Limiter (VRMIN).

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcPIC

ExcitationSystemDynamics

Proportional/Integral Regulator Excitation System Model. This model can be used to represent excitation systems with a proportional-integral (PI) voltage regulator controller.

Native Members

e1

1..1

PU

Field voltage value 1 (E1). Typical Value = 0.

e2

1..1

PU

Field voltage value 2 (E2). Typical Value = 0.

efdmax

1..1

PU

Exciter maximum limit (Efdmax). Typical Value = 8.

efdmin

1..1

PU

Exciter minimum limit (Efdmin). Typical Value = -0.87.

ka

1..1

PU

PI controller gain (Ka). Typical Value = 3.15.

kc

1..1

PU

Exciter regulation factor (Kc). Typical Value = 0.08.

ke

1..1

PU

Exciter constant (Ke). Typical Value = 0.

kf

1..1

PU

Rate feedback gain (Kf). Typical Value = 0.

ki

1..1

PU

Current source gain (Ki). Typical Value = 0.

kp

1..1

PU

Potential source gain (Kp). Typical Value = 6.5.

se1

1..1

PU

Saturation factor at E1 (Se1). Typical Value = 0.

se2

1..1

PU

Saturation factor at E2 (Se2). Typical Value = 0.

ta1

1..1

Seconds

PI controller time constant (Ta1). Typical Value = 1.

ta2

1..1

Seconds

Voltage regulator time constant (Ta2). Typical Value = 0.01.

ta3

1..1

Seconds

Lead time constant (Ta3). Typical Value = 0.

ta4

1..1

Seconds

Lag time constant (Ta4). Typical Value = 0.

te

1..1

Seconds

Exciter time constant (Te). Typical Value = 0.

tf1

1..1

Seconds

Rate feedback time constant (Tf1). Typical Value = 0.

tf2

1..1

Seconds

Rate feedback lag time constant (Tf2). Typical Value = 0.

vr1

1..1

PU

PI maximum limit (Vr1). Typical Value = 1.

vr2

1..1

PU

PI minimum limit (Vr2). Typical Value = -0.87.

vrmax

1..1

PU

Voltage regulator maximum limit (Vrmax). Typical Value = 1.

vrmin

1..1

PU

Voltage regulator minimum limit (Vrmin). Typical Value = -0.87.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcREXS

ExcitationSystemDynamics

General Purpose Rotating Excitation System Model. This model can be used to represent a wide range of excitation systems whose DC power source is an AC or DC generator. It encompasses IEEE type AC1, AC2, DC1, and DC2 excitation system models.

Native Members

e1

1..1

PU

Field voltage value 1 (E1). Typical Value = 3.

e2

1..1

PU

Field voltage value 2 (E2). Typical Value = 4.

fbf

1..1

ExcREXSFeedbackSignalKind

Rate feedback signal flag (Fbf). Typical Value = fieldCurrent.

flimf

1..1

PU

Limit type flag (Flimf). Typical Value = 0.

kc

1..1

PU

Rectifier regulation factor (Kc). Typical Value = 0.05.

kd

1..1

PU

Exciter regulation factor (Kd). Typical Value = 2.

ke

1..1

PU

Exciter field proportional constant (Ke). Typical Value = 1.

kefd

1..1

PU

Field voltage feedback gain (Kefd). Typical Value = 0.

kf

1..1

Seconds

Rate feedback gain (Kf). Typical Value = 0.05.

kh

1..1

PU

Field voltage controller feedback gain (Kh). Typical Value = 0.

kii

1..1

PU

Field Current Regulator Integral Gain (Kii). Typical Value = 0.

kip

1..1

PU

Field Current Regulator Proportional Gain (Kip). Typical Value = 1.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

kvi

1..1

PU

Voltage Regulator Integral Gain (Kvi). Typical Value = 0.

kvp

1..1

PU

Voltage Regulator Proportional Gain (Kvp). Typical Value = 2800.

kvphz

1..1

PU

V/Hz limiter gain (Kvphz). Typical Value = 0.

nvphz

1..1

PU

Pickup speed of V/Hz limiter (Nvphz). Typical Value = 0.

se1

1..1

PU

Saturation factor at E1 (Se1). Typical Value = 0.0001.

se2

1..1

PU

Saturation factor at E2 (Se2). Typical Value = 0.001.

ta

1..1

Seconds

Voltage Regulator time constant (Ta). Typical Value = 0.01.

tb1

1..1

Seconds

Lag time constant (Tb1). Typical Value = 0.

tb2

1..1

Seconds

Lag time constant (Tb2). Typical Value = 0.

tc1

1..1

Seconds

Lead time constant (Tc1). Typical Value = 0.

tc2

1..1

Seconds

Lead time constant (Tc2). Typical Value = 0.

te

1..1

Seconds

Exciter field time constant (Te). Typical Value = 1.2.

tf

1..1

Seconds

Rate feedback time constant (Tf). Typical Value = 1.

tf1

1..1

Seconds

Feedback lead time constant (Tf1). Typical Value = 0.

tf2

1..1

Seconds

Feedback lag time constant (Tf2). Typical Value = 0.

tp

1..1

Seconds

Field current Bridge time constant (Tp). Typical Value = 0.

vcmax

1..1

PU

Maximum compounding voltage (Vcmax). Typical Value = 0.

vfmax

1..1

PU

Maximum Exciter Field Current (Vfmax). Typical Value = 47.

vfmin

1..1

PU

Minimum Exciter Field Current (Vfmin). Typical Value = -20.

vimax

1..1

PU

Voltage Regulator Input Limit (Vimax). Typical Value = 0.1.

vrmax

1..1

PU

Maximum controller output (Vrmax). Typical Value = 47.

vrmin

1..1

PU

Minimum controller output (Vrmin). Typical Value = -20.

xc

1..1

PU

Exciter compounding reactance (Xc). Typical Value = 0.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcSCRX

ExcitationSystemDynamics

Simple excitation system model representing generic characteristics of many excitation systems; intended for use where negative field current may be a problem.

Native Members

cswitch

1..1

Boolean

Power source switch (Cswitch).
true = fixed voltage of 1.0 PU
false = generator terminal voltage.

emax

1..1

PU

Maximum field voltage output (Emax). Typical Value = 5.

emin

1..1

PU

Minimum field voltage output (Emin). Typical Value = 0.

k

1..1

PU

Gain (K) (>0). Typical Value = 200.

rcrfd

1..1

Simple_Float

Rc/Rfd - ratio of field discharge resistance to field winding resistance (RcRfd). Typical Value = 0.

tatb

1..1

Simple_Float

Ta/Tb - gain reduction ratio of lag-lead element (TaTb). The parameter Ta is not defined explicitly. Typical Value = 0.1.

tb

1..1

Seconds

Denominator time constant of lag-lead block (Tb). Typical Value = 10.

te

1..1

Seconds

Time constant of gain block (Te) (>0). Typical Value = 0.02.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcSEXS

ExcitationSystemDynamics

Simplified Excitation System Model.

Native Members

efdmax

1..1

PU

Field voltage clipping maximum limit (Efdmax). Typical Value = 5.

efdmin

1..1

PU

Field voltage clipping minimum limit (Efdmin). Typical Value = -5.

emax

1..1

PU

Maximum field voltage output (Emax). Typical Value = 5.

emin

1..1

PU

Minimum field voltage output (Emin). Typical Value = -5.

k

1..1

PU

Gain (K) (>0). Typical Value = 100.

kc

1..1

PU

PI controller gain (Kc). Typical Value = 0.08.

tatb

1..1

Simple_Float

Ta/Tb - gain reduction ratio of lag-lead element (TaTb). Typical Value = 0.1.

tb

1..1

Seconds

Denominator time constant of lag-lead block (Tb). Typical Value = 10.

tc

1..1

Seconds

PI controller phase lead time constant (Tc). Typical Value = 0.

te

1..1

Seconds

Time constant of gain block (Te). Typical Value = 0.05.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcSK

ExcitationSystemDynamics

Slovakian Excitation System Model. UEL and secondary voltage control are included in this model. When this model is used, there cannot be a separate underexcitation limiter or VAr controller model.

Native Members

efdmax

1..1

PU

Field voltage clipping limit (Efdmax).

efdmin

1..1

PU

Field voltage clipping limit (Efdmin).

emax

1..1

PU

Maximum field voltage output (Emax). Typical Value = 20.

emin

1..1

PU

Minimum field voltage output (Emin). Typical Value = -20.

k

1..1

PU

Gain (K). Typical Value = 1.

k1

1..1

PU

Parameter of underexcitation limit (K1). Typical Value = 0.1364.

k2

1..1

PU

Parameter of underexcitation limit (K2). Typical Value = -0.3861.

kc

1..1

PU

PI controller gain (Kc). Typical Value = 70.

kce

1..1

PU

Rectifier regulation factor (Kce). Typical Value = 0.

kd

1..1

PU

Exciter internal reactance (Kd). Typical Value = 0.

kgob

1..1

PU

P controller gain (Kgob). Typical Value = 10.

kp

1..1

PU

PI controller gain (Kp). Typical Value = 1.

kqi

1..1

PU

PI controller gain of integral component (Kqi). Typical Value = 0.

kqob

1..1

PU

Rate of rise of the reactive power (Kqob).

kqp

1..1

PU

PI controller gain (Kqp). Typical Value = 0.

nq

1..1

PU

Dead band of reactive power (nq). Determines the range of sensitivity. Typical Value = 0.001.

qconoff

1..1

Boolean

Secondary voltage control state (Qc_on_off).
true = secondary voltage control is ON
false = secondary voltage control is OFF.
Typical Value = false.

qz

1..1

PU

Desired value (setpoint) of reactive power, manual setting (Qz).

remote

1..1

Boolean

Selector to apply automatic calculation in secondary controller model.
true = automatic calculation is activated
false = manual set is active; the use of desired value of reactive power (Qz) is required.
Typical Value = true.

sbase

1..1

ApparentPower

Apparent power of the unit (Sbase). Unit = MVA. Typical Value = 259.

tc

1..1

Seconds

PI controller phase lead time constant (Tc). Typical Value = 8.

te

1..1

Seconds

Time constant of gain block (Te). Typical Value = 0.1.

ti

1..1

Seconds

PI controller phase lead time constant (Ti). Typical Value = 2.

tp

1..1

Seconds

Time constant (Tp). Typical Value = 0.1.

tr

1..1

Seconds

Voltage transducer time constant (Tr). Typical Value = 0.01.

uimax

1..1

PU

Maximum error (Uimax). Typical Value = 10.

uimin

1..1

PU

Minimum error (UImin). Typical Value = -10.

urmax

1..1

PU

Maximum controller output (URmax). Typical Value = 10.

urmin

1..1

PU

Minimum controller output (URmin). Typical Value = -10.

vtmax

1..1

PU

Maximum terminal voltage input (Vtmax). Determines the range of voltage dead band. Typical Value = 1.05.

vtmin

1..1

PU

Minimum terminal voltage input (Vtmin). Determines the range of voltage dead band. Typical Value = 0.95.

yp

1..1

PU

Maximum output (Yp). Minimum output = 0. Typical Value = 1.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcST1A

ExcitationSystemDynamics

Modification of an old IEEE ST1A static excitation system without overexcitation limiter (OEL) and underexcitation limiter (UEL).

Native Members

ilr

1..1

PU

Exciter output current limit reference (Ilr). Typical Value = 0.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 190.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 0.05.

kf

1..1

PU

Excitation control system stabilizer gains (Kf). Typical Value = 0.

klr

1..1

PU

Exciter output current limiter gain (Klr). Typical Value = 0.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.02.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 10.

tb1

1..1

Seconds

Voltage regulator time constant (Tb1). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 1.

tc1

1..1

Seconds

Voltage regulator time constant (Tc1). Typical Value = 0.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 1.

vamax

1..1

PU

Maximum voltage regulator output (Vamax). Typical Value = 999.

vamin

1..1

PU

Minimum voltage regulator output (Vamin). Typical Value = -999.

vimax

1..1

PU

Maximum voltage regulator input limit (Vimax). Typical Value = 999.

vimin

1..1

PU

Minimum voltage regulator input limit (Vimin). Typical Value = -999.

vrmax

1..1

PU

Maximum voltage regulator outputs (Vrmax). Typical Value = 7.8.

vrmin

1..1

PU

Minimum voltage regulator outputs (Vrmin). Typical Value = -6.7.

xe

1..1

PU

Excitation xfmr effective reactance (Xe). Typical Value = 0.04.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcST2A

ExcitationSystemDynamics

Modified IEEE ST2A static excitation system - another lead-lag block added to match the model defined by WECC.

Native Members

efdmax

1..1

PU

Maximum field voltage (Efdmax). Typical Value = 99.

ka

1..1

PU

Voltage regulator gain (Ka). Typical Value = 120.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 1.82.

ke

1..1

PU

Exciter constant related to self-excited field (Ke). Typical Value = 1.

kf

1..1

PU

Excitation control system stabilizer gains (Kf). Typical Value = 0.05.

ki

1..1

PU

Potential circuit gain coefficient (Ki). Typical Value = 8.

kp

1..1

PU

Potential circuit gain coefficient (Kp). Typical Value = 4.88.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.15.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 0.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 0.

te

1..1

Seconds

Exciter time constant, integration rate associated with exciter control (Te). Typical Value = 0.5.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 0.7.

uelin

1..1

Boolean

UEL input (UELin).
true = HV gate
false = add to error signal.
Typical Value = false.

vrmax

1..1

PU

Maximum voltage regulator outputs (Vrmax). Typical Value = 1.

vrmin

1..1

PU

Minimum voltage regulator outputs (Vrmin). Typical Value = -1.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcST3A

ExcitationSystemDynamics

Modified IEEE ST3A static excitation system with added speed multiplier.

Native Members

efdmax

1..1

PU

Maximum AVR output (Efdmax). Typical Value = 6.9.

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 1.1.

kg

1..1

PU

Feedback gain constant of the inner loop field regulator (Kg). Typical Value = 1.

ki

1..1

PU

Potential circuit gain coefficient (Ki). Typical Value = 4.83.

kj

1..1

PU

AVR gain (Kj). Typical Value = 200.

km

1..1

PU

Forward gain constant of the inner loop field regulator (Km). Typical Value = 7.04.

kp

1..1

PU

Potential source gain (Kp) (>0). Typical Value = 4.37.

ks

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks). Typical Value = 0.

ks1

1..1

PU

Coefficient to allow different usage of the model-speed coefficient (Ks1). Typical Value = 0.

tb

1..1

Seconds

Voltage regulator time constant (Tb). Typical Value = 6.67.

tc

1..1

Seconds

Voltage regulator time constant (Tc). Typical Value = 1.

thetap

1..1

AngleDegrees

Potential circuit phase angle (thetap). Typical Value = 20.

tm

1..1

Seconds

Forward time constant of inner loop field regulator (Tm). Typical Value = 1.

vbmax

1..1

PU

Maximum excitation voltage (Vbmax). Typical Value = 8.63.

vgmax

1..1

PU

Maximum inner loop feedback voltage (Vgmax). Typical Value = 6.53.

vimax

1..1

PU

Maximum voltage regulator input limit (Vimax). Typical Value = 0.2.

vimin

1..1

PU

Minimum voltage regulator input limit (Vimin). Typical Value = -0.2.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 1.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = 0.

xl

1..1

PU

Reactance associated with potential source (Xl). Typical Value = 0.09.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcST4B

ExcitationSystemDynamics

Modified IEEE ST4B static excitation system with maximum inner loop feedback gain Vgmax.

Native Members

kc

1..1

PU

Rectifier loading factor proportional to commutating reactance (Kc). Typical Value = 0.113.

kg

1..1

PU

Feedback gain constant of the inner loop field regulator (Kg). Typical Value = 0.

ki

1..1

PU

Potential circuit gain coefficient (Ki). Typical Value = 0.

kim

1..1

PU

Voltage regulator integral gain output (Kim). Typical Value = 0.

kir

1..1

PU

Voltage regulator integral gain (Kir). Typical Value = 10.75.

kp

1..1

PU

Potential circuit gain coefficient (Kp). Typical Value = 9.3.

kpm

1..1

PU

Voltage regulator proportional gain output (Kpm). Typical Value = 1.

kpr

1..1

PU

Voltage regulator proportional gain (Kpr). Typical Value = 10.75.

lvgate

1..1

Boolean

Selector (LVgate).
true = LVgate is part of the block diagram
false = LVgate is not part of the block diagram.
Typical Value = false.

ta

1..1

Seconds

Voltage regulator time constant (Ta). Typical Value = 0.02.

thetap

1..1

AngleDegrees

Potential circuit phase angle (thetap). Typical Value = 0.

uel

1..1

Boolean

Selector (Uel).
true = UEL is part of block diagram
false = UEL is not part of block diagram.
Typical Value = false.

vbmax

1..1

PU

Maximum excitation voltage (Vbmax). Typical Value = 11.63.

vgmax

1..1

PU

Maximum inner loop feedback voltage (Vgmax). Typical Value = 5.8.

vmmax

1..1

PU

Maximum inner loop output (Vmmax). Typical Value = 99.

vmmin

1..1

PU

Minimum inner loop output (Vmmin). Typical Value = -99.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 1.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = -0.87.

xl

1..1

PU

Reactance associated with potential source (Xl). Typical Value = 0.124.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcST6B

ExcitationSystemDynamics

Modified IEEE ST6B static excitation system with PID controller and optional inner feedbacks loop.

Native Members

ilr

1..1

PU

Exciter output current limit reference (Ilr). Typical Value = 4.164.

k1

1..1

Boolean

Selector (K1).
true = feedback is from Ifd
false = feedback is not from Ifd.
Typical Value = true.

kcl

1..1

PU

Exciter output current limit adjustment (Kcl). Typical Value = 1.0577.

kff

1..1

PU

Pre-control gain constant of the inner loop field regulator (Kff). Typical Value = 1.

kg

1..1

PU

Feedback gain constant of the inner loop field regulator (Kg). Typical Value = 1.

kia

1..1

PU

Voltage regulator integral gain (Kia). Typical Value = 45.094.

klr

1..1

PU

Exciter output current limit adjustment (Kcl). Typical Value = 17.33.

km

1..1

PU

Forward gain constant of the inner loop field regulator (Km). Typical Value = 1.

kpa

1..1

PU

Voltage regulator proportional gain (Kpa). Typical Value = 18.038.

kvd

1..1

PU

Voltage regulator derivative gain (Kvd). Typical Value = 0.

oelin

1..1

ExcST6BOELselectorKind

OEL input selector (OELin). Typical Value = noOELinput.

tg

1..1

Seconds

Feedback time constant of inner loop field voltage regulator (Tg). Typical Value = 0.02.

ts

1..1

Seconds

Rectifier firing time constant (Ts). Typical Value = 0.

tvd

1..1

Seconds

Voltage regulator derivative gain (Tvd). Typical Value = 0.

vamax

1..1

PU

Maximum voltage regulator output (Vamax). Typical Value = 4.81.

vamin

1..1

PU

Minimum voltage regulator output (Vamin). Typical Value = -3.85.

vilim

1..1

Boolean

Selector (Vilim).
true = Vimin-Vimax limiter is active
false = Vimin-Vimax limiter is not active.
Typical Value = true.

vimax

1..1

PU

Maximum voltage regulator input limit (Vimax). Typical Value = 10.

vimin

1..1

PU

Minimum voltage regulator input limit (Vimin). Typical Value = -10.

vmult

1..1

Boolean

Selector (Vmult).
true = multiply regulator output by terminal voltage
false = do not multiply regulator output by terminal voltage.
Typical Value = true.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 4.81.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = -3.85.

xc

1..1

PU

Excitation source reactance (Xc). Typical Value = 0.05.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcST7B

ExcitationSystemDynamics

Modified IEEE ST7B static excitation system without stator current limiter (SCL) and current compensator (DROOP) inputs.

Native Members

kh

1..1

PU

High-value gate feedback gain (Kh). Typical Value = 1.

kia

1..1

PU

Voltage regulator integral gain (Kia). Typical Value = 1.

kl

1..1

PU

Low-value gate feedback gain (Kl). Typical Value = 1.

kpa

1..1

PU

Voltage regulator proportional gain (Kpa). Typical Value = 40.

oelin

1..1

ExcST7BOELselectorKind

OEL input selector (OELin). Typical Value = noOELinput.

tb

1..1

Seconds

Regulator lag time constant (Tb). Typical Value = 1.

tc

1..1

Seconds

Regulator lead time constant (Tc). Typical Value = 1.

tf

1..1

Seconds

Excitation control system stabilizer time constant (Tf). Typical Value = 1.

tg

1..1

Seconds

Feedback time constant of inner loop field voltage regulator (Tg). Typical Value = 1.

tia

1..1

Seconds

Feedback time constant (Tia). Typical Value = 3.

ts

1..1

Seconds

Rectifier firing time constant (Ts). Typical Value = 0.

uelin

1..1

ExcST7BUELselectorKind

UEL input selector (UELin). Typical Value = noUELinput.

vmax

1..1

PU

Maximum voltage reference signal (Vmax). Typical Value = 1.1.

vmin

1..1

PU

Minimum voltage reference signal (Vmin). Typical Value = 0.9.

vrmax

1..1

PU

Maximum voltage regulator output (Vrmax). Typical Value = 5.

vrmin

1..1

PU

Minimum voltage regulator output (Vrmin). Typical Value = -4.5.

Inherited Members

Inheritance pass: ->ExcitationSystemDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachineDynamics

1..1

SynchronousMachineDynamics

see ExcitationSystemDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GenICompensationForGenJ

VoltageCompensatorDynamics

This class provides the resistive and reactive components of compensation for the generator associated with the IEEE Type 2 voltage compensator for current flow out of one of the other generators in the interconnection.

Native Members

rcij

1..1

PU

Resistive component of compensation of generator associated with this IEEE Type 2 voltage compensator for current flow out of another generator (Rcij).

xcij

1..1

PU

Reactive component of compensation of generator associated with this IEEE Type 2 voltage compensator for current flow out of another generator (Xcij).

VcompIEEEType2

[1..1]

VCompIEEEType2

The standard IEEE Type 2 voltage compensator of this compensation.

SynchronousMachineDynamics

[1..1]

SynchronousMachineDynamics

Standard synchronous machine out of which current flow is being compensated for.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovCT1

TurbineGovernorDynamics

General model for any prime mover with a PID governor, used primarily for combustion turbine and combined cycle units.
This model can be used to represent a variety of prime movers controlled by PID governors. It is suitable, for example, for representation of




Additional information on this model is available in the 2012 IEEE report, Dynamic Models for Turbine-Governors in Power System Studies, section 3.1.2.3 page 3-4 (GGOV1).

Native Members

aset

1..1

Simple_Float

Acceleration limiter setpoint (Aset). Unit = PU/sec. Typical Value = 0.01.

db

1..1

PU

Speed governor dead band in per unit speed (db). In the majority of applications, it is recommended that this value be set to zero. Typical Value = 0.

dm

1..1

PU

Speed sensitivity coefficient (Dm). Dm can represent either the variation of the engine power with the shaft speed or the variation of maximum power capability with shaft speed. If it is positive it describes the falling slope of the engine speed verses power characteristic as speed increases. A slightly falling characteristic is typical for reciprocating engines and some aero-derivative turbines. If it is negative the engine power is assumed to be unaffected by the shaft speed, but the maximum permissible fuel flow is taken to fall with falling shaft speed. This is characteristic of single-shaft industrial turbines due to exhaust temperature limits. Typical Value = 0.

ka

1..1

PU

Acceleration limiter gain (Ka). Typical Value = 10.

kdgov

1..1

PU

Governor derivative gain (Kdgov). Typical Value = 0.

kigov

1..1

PU

Governor integral gain (Kigov). Typical Value = 2.

kiload

1..1

PU

Load limiter integral gain for PI controller (Kiload). Typical Value = 0.67.

kimw

1..1

PU

Power controller (reset) gain (Kimw). The default value of 0.01 corresponds to a reset time of 100 seconds. A value of 0.001 corresponds to a relatively slow acting load controller. Typical Value = 0.01.

kpgov

1..1

PU

Governor proportional gain (Kpgov). Typical Value = 10.

kpload

1..1

PU

Load limiter proportional gain for PI controller (Kpload). Typical Value = 2.

kturb

1..1

PU

Turbine gain (Kturb) (>0). Typical Value = 1.5.

ldref

1..1

PU

Load limiter reference value (Ldref). Typical Value = 1.

maxerr

1..1

PU

Maximum value for speed error signal (maxerr). Typical Value = 0.05.

minerr

1..1

PU

Minimum value for speed error signal (minerr). Typical Value = -0.05.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

pmwset

1..1

ActivePower

Power controller setpoint (Pmwset). Unit = MW. Typical Value = 80.

r

1..1

PU

Permanent droop (R). Typical Value = 0.04.

rclose

1..1

Simple_Float

Minimum valve closing rate (Rclose). Unit = PU/sec. Typical Value = -0.1.

rdown

1..1

PU

Maximum rate of load limit decrease (Rdown). Typical Value = -99.

ropen

1..1

Simple_Float

Maximum valve opening rate (Ropen). Unit = PU/sec. Typical Value = 0.10.

rselect

1..1

DroopSignalFeedbackKind

Feedback signal for droop (Rselect). Typical Value = electricalPower.

rup

1..1

PU

Maximum rate of load limit increase (Rup). Typical Value = 99.

ta

1..1

Seconds

Acceleration limiter time constant (Ta) (>0). Typical Value = 0.1.

tact

1..1

Seconds

Actuator time constant (Tact). Typical Value = 0.5.

tb

1..1

Seconds

Turbine lag time constant (Tb) (>0). Typical Value = 0.5.

tc

1..1

Seconds

Turbine lead time constant (Tc). Typical Value = 0.

tdgov

1..1

Seconds

Governor derivative controller time constant (Tdgov). Typical Value = 1.

teng

1..1

Seconds

Transport time delay for diesel engine used in representing diesel engines where there is a small but measurable transport delay between a change in fuel flow setting and the development of torque (Teng). Teng should be zero in all but special cases where this transport delay is of particular concern. Typical Value = 0.

tfload

1..1

Seconds

Load Limiter time constant (Tfload) (>0). Typical Value = 3.

tpelec

1..1

Seconds

Electrical power transducer time constant (Tpelec) (>0). Typical Value = 1.

tsa

1..1

Seconds

Temperature detection lead time constant (Tsa). Typical Value = 4.

tsb

1..1

Seconds

Temperature detection lag time constant (Tsb). Typical Value = 5.

vmax

1..1

PU

Maximum valve position limit (Vmax). Typical Value = 1.

vmin

1..1

PU

Minimum valve position limit (Vmin). Typical Value = 0.15.

wfnl

1..1

PU

No load fuel flow (Wfnl). Typical Value = 0.2.

wfspd

1..1

Boolean

Switch for fuel source characteristic to recognize that fuel flow, for a given fuel valve stroke, can be proportional to engine speed (Wfspd).
true = fuel flow proportional to speed (for some gas turbines and diesel engines with positive displacement fuel injectors)
false = fuel control system keeps fuel flow independent of engine speed.
Typical Value = true.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovCT2

TurbineGovernorDynamics

General governor model with frequency-dependent fuel flow limit. This model is a modification of the GovCT1 model in order to represent the frequency-dependent fuel flow limit of a specific gas turbine manufacturer.

Native Members

aset

1..1

Simple_Float

Acceleration limiter setpoint (Aset). Unit = PU/sec. Typical Value = 10.

db

1..1

PU

Speed governor dead band in per unit speed (db). In the majority of applications, it is recommended that this value be set to zero. Typical Value = 0.

dm

1..1

PU

Speed sensitivity coefficient (Dm). Dm can represent either the variation of the engine power with the shaft speed or the variation of maximum power capability with shaft speed. If it is positive it describes the falling slope of the engine speed verses power characteristic as speed increases. A slightly falling characteristic is typical for reciprocating engines and some aero-derivative turbines. If it is negative the engine power is assumed to be unaffected by the shaft speed, but the maximum permissible fuel flow is taken to fall with falling shaft speed. This is characteristic of single-shaft industrial turbines due to exhaust temperature limits. Typical Value = 0.

flim1

1..1

Frequency

Frequency threshold 1 (Flim1). Unit = Hz. Typical Value = 59.

flim10

1..1

Frequency

Frequency threshold 10 (Flim10). Unit = Hz. Typical Value = 0.

flim2

1..1

Frequency

Frequency threshold 2 (Flim2). Unit = Hz. Typical Value = 0.

flim3

1..1

Frequency

Frequency threshold 3 (Flim3). Unit = Hz. Typical Value = 0.

flim4

1..1

Frequency

Frequency threshold 4 (Flim4). Unit = Hz. Typical Value = 0.

flim5

1..1

Frequency

Frequency threshold 5 (Flim5). Unit = Hz. Typical Value = 0.

flim6

1..1

Frequency

Frequency threshold 6 (Flim6). Unit = Hz. Typical Value = 0.

flim7

1..1

Frequency

Frequency threshold 7 (Flim7). Unit = Hz. Typical Value = 0.

flim8

1..1

Frequency

Frequency threshold 8 (Flim8). Unit = Hz. Typical Value = 0.

flim9

1..1

Frequency

Frequency threshold 9 (Flim9). Unit = Hz. Typical Value = 0.

ka

1..1

PU

Acceleration limiter Gain (Ka). Typical Value = 10.

kdgov

1..1

PU

Governor derivative gain (Kdgov). Typical Value = 0.

kigov

1..1

PU

Governor integral gain (Kigov). Typical Value = 0.45.

kiload

1..1

PU

Load limiter integral gain for PI controller (Kiload). Typical Value = 1.

kimw

1..1

PU

Power controller (reset) gain (Kimw). The default value of 0.01 corresponds to a reset time of 100 seconds. A value of 0.001 corresponds to a relatively slow acting load controller. Typical Value = 0.

kpgov

1..1

PU

Governor proportional gain (Kpgov). Typical Value = 4.

kpload

1..1

PU

Load limiter proportional gain for PI controller (Kpload). Typical Value = 1.

kturb

1..1

PU

Turbine gain (Kturb). Typical Value = 1.9168.

ldref

1..1

PU

Load limiter reference value (Ldref). Typical Value = 1.

maxerr

1..1

PU

Maximum value for speed error signal (Maxerr). Typical Value = 1.

minerr

1..1

PU

Minimum value for speed error signal (Minerr). Typical Value = -1.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

plim1

1..1

PU

Power limit 1 (Plim1). Typical Value = 0.8325.

plim10

1..1

PU

Power limit 10 (Plim10). Typical Value = 0.

plim2

1..1

PU

Power limit 2 (Plim2). Typical Value = 0.

plim3

1..1

PU

Power limit 3 (Plim3). Typical Value = 0.

plim4

1..1

PU

Power limit 4 (Plim4). Typical Value = 0.

plim5

1..1

PU

Power limit 5 (Plim5). Typical Value = 0.

plim6

1..1

PU

Power limit 6 (Plim6). Typical Value = 0.

plim7

1..1

PU

Power limit 7 (Plim7). Typical Value = 0.

plim8

1..1

PU

Power limit 8 (Plim8). Typical Value = 0.

plim9

1..1

PU

Power Limit 9 (Plim9). Typical Value = 0.

pmwset

1..1

ActivePower

Power controller setpoint (Pmwset). Unit = MW. Typical Value = 0.

prate

1..1

PU

Ramp rate for frequency-dependent power limit (Prate). Typical Value = 0.017.

r

1..1

PU

Permanent droop (R). Typical Value = 0.05.

rclose

1..1

Simple_Float

Minimum valve closing rate (Rclose). Unit = PU/sec. Typical Value = -99.

rdown

1..1

PU

Maximum rate of load limit decrease (Rdown). Typical Value = -99.

ropen

1..1

Simple_Float

Maximum valve opening rate (Ropen). Unit = PU/sec. Typical Value = 99.

rselect

1..1

DroopSignalFeedbackKind

Feedback signal for droop (Rselect). Typical Value = electricalPower.

rup

1..1

PU

Maximum rate of load limit increase (Rup). Typical Value = 99.

ta

1..1

Seconds

Acceleration limiter time constant (Ta). Typical Value = 1.

tact

1..1

Seconds

Actuator time constant (Tact). Typical Value = 0.4.

tb

1..1

Seconds

Turbine lag time constant (Tb). Typical Value = 0.1.

tc

1..1

Seconds

Turbine lead time constant (Tc). Typical Value = 0.

tdgov

1..1

Seconds

Governor derivative controller time constant (Tdgov). Typical Value = 1.

teng

1..1

Seconds

Transport time delay for diesel engine used in representing diesel engines where there is a small but measurable transport delay between a change in fuel flow setting and the development of torque (Teng). Teng should be zero in all but special cases where this transport delay is of particular concern. Typical Value = 0.

tfload

1..1

Seconds

Load Limiter time constant (Tfload). Typical Value = 3.

tpelec

1..1

Seconds

Electrical power transducer time constant (Tpelec). Typical Value = 2.5.

tsa

1..1

Seconds

Temperature detection lead time constant (Tsa). Typical Value = 0.

tsb

1..1

Seconds

Temperature detection lag time constant (Tsb). Typical Value = 50.

vmax

1..1

PU

Maximum valve position limit (Vmax). Typical Value = 1.

vmin

1..1

PU

Minimum valve position limit (Vmin). Typical Value = 0.175.

wfnl

1..1

PU

No load fuel flow (Wfnl). Typical Value = 0.187.

wfspd

1..1

Boolean

Switch for fuel source characteristic to recognize that fuel flow, for a given fuel valve stroke, can be proportional to engine speed (Wfspd).
true = fuel flow proportional to speed (for some gas turbines and diesel engines with positive displacement fuel injectors)
false = fuel control system keeps fuel flow independent of engine speed.
Typical Value = false.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovGAST

TurbineGovernorDynamics

Single shaft gas turbine.

Native Members

at

1..1

PU

Ambient temperature load limit (Load Limit). Typical Value = 1.

dturb

1..1

PU

Turbine damping factor (Dturb). Typical Value = 0.18.

kt

1..1

PU

Temperature limiter gain (Kt). Typical Value = 3.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0).

r

1..1

PU

Permanent droop (R). Typical Value = 0.04.

t1

1..1

Seconds

Governor mechanism time constant (T1). T1 represents the natural valve positioning time constant of the governor for small disturbances, as seen when rate limiting is not in effect. Typical Value = 0.5.

t2

1..1

Seconds

Turbine power time constant (T2). T2 represents delay due to internal energy storage of the gas turbine engine. T2 can be used to give a rough approximation to the delay associated with acceleration of the compressor spool of a multi-shaft engine, or with the compressibility of gas in the plenum of a the free power turbine of an aero-derivative unit, for example. Typical Value = 0.5.

t3

1..1

Seconds

Turbine exhaust temperature time constant (T3). Typical Value = 3.

vmax

1..1

PU

Maximum turbine power, PU of MWbase (Vmax). Typical Value = 1.

vmin

1..1

PU

Minimum turbine power, PU of MWbase (Vmin). Typical Value = 0.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovGAST1

TurbineGovernorDynamics

Modified single shaft gas turbine.

Native Members

a

1..1

Simple_Float

Turbine power time constant numerator scale factor (a). Typical Value = 0.8.

b

1..1

Simple_Float

Turbine power time constant denominator scale factor (b). Typical Value = 1.

db1

1..1

Frequency

Intentional dead-band width (db1). Unit = Hz. Typical Value = 0.

db2

1..1

ActivePower

Unintentional dead-band (db2). Unit = MW. Typical Value = 0.

eps

1..1

Frequency

Intentional db hysteresis (eps). Unit = Hz. Typical Value = 0.

fidle

1..1

PU

Fuel flow at zero power output (Fidle). Typical Value = 0.18.

gv1

1..1

PU

Nonlinear gain point 1, PU gv (Gv1). Typical Value = 0.

gv2

1..1

PU

Nonlinear gain point 2,PU gv (Gv2). Typical Value = 0.

gv3

1..1

PU

Nonlinear gain point 3, PU gv (Gv3). Typical Value = 0.

gv4

1..1

PU

Nonlinear gain point 4, PU gv (Gv4). Typical Value = 0.

gv5

1..1

PU

Nonlinear gain point 5, PU gv (Gv5). Typical Value = 0.

gv6

1..1

PU

Nonlinear gain point 6, PU gv (Gv6). Typical Value = 0.

ka

1..1

PU

Governor gain (Ka). Typical Value = 0.

kt

1..1

PU

Temperature limiter gain (Kt). Typical Value = 3.

lmax

1..1

PU

Ambient temperature load limit (Lmax). Lmax is the turbine power output corresponding to the limiting exhaust gas temperature. Typical Value = 1.

loadinc

1..1

PU

Valve position change allowed at fast rate (Loadinc). Typical Value = 0.05.

ltrate

1..1

Simple_Float

Maximum long term fuel valve opening rate (Ltrate). Typical Value = 0.02.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

pgv1

1..1

PU

Nonlinear gain point 1, PU power (Pgv1). Typical Value = 0.

pgv2

1..1

PU

Nonlinear gain point 2, PU power (Pgv2). Typical Value = 0.

pgv3

1..1

PU

Nonlinear gain point 3, PU power (Pgv3). Typical Value = 0.

pgv4

1..1

PU

Nonlinear gain point 4, PU power (Pgv4). Typical Value = 0.

pgv5

1..1

PU

Nonlinear gain point 5, PU power (Pgv5). Typical Value = 0.

pgv6

1..1

PU

Nonlinear gain point 6, PU power (Pgv6). Typical Value = 0.

r

1..1

PU

Permanent droop (R). Typical Value = 0.04.

rmax

1..1

Simple_Float

Maximum fuel valve opening rate (Rmax). Unit = PU/sec. Typical Value = 1.

t1

1..1

Seconds

Governor mechanism time constant (T1). T1 represents the natural valve positioning time constant of the governor for small disturbances, as seen when rate limiting is not in effect. Typical Value = 0.5.

t2

1..1

Seconds

Turbine power time constant (T2). T2 represents delay due to internal energy storage of the gas turbine engine. T2 can be used to give a rough approximation to the delay associated with acceleration of the compressor spool of a multi-shaft engine, or with the compressibility of gas in the plenum of the free power turbine of an aero-derivative unit, for example. Typical Value = 0.5.

t3

1..1

Seconds

Turbine exhaust temperature time constant (T3). T3 represents delay in the exhaust temperature and load limiting system. Typical Value = 3.

t4

1..1

Seconds

Governor lead time constant (T4). Typical Value = 0.

t5

1..1

Seconds

Governor lag time constant (T5). Typical Value = 0.

tltr

1..1

Seconds

Valve position averaging time constant (Tltr). Typical Value = 10.

vmax

1..1

PU

Maximum turbine power, PU of MWbase (Vmax). Typical Value = 1.

vmin

1..1

PU

Minimum turbine power, PU of MWbase (Vmin). Typical Value = 0.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovGAST2

TurbineGovernorDynamics

Gas turbine model.

Native Members

a

1..1

Simple_Float

Valve positioner (A).

af1

1..1

PU

Exhaust temperature Parameter (Af1). Unit = per unit temperature. Based on temperature in degrees C.

af2

1..1

PU

Coefficient equal to 0.5(1-speed) (Af2).

b

1..1

Simple_Float

Valve positioner (B).

bf1

1..1

PU

(Bf1). Bf1 = E(1-w) where E (speed sensitivity coefficient) is 0.55 to 0.65 x Tr. Unit = per unit temperature. Based on temperature in degrees C.

bf2

1..1

PU

Turbine Torque Coefficient Khhv (depends on heating value of fuel stream in combustion chamber) (Bf2).

c

1..1

Simple_Float

Valve positioner (C).

cf2

1..1

PU

Coefficient defining fuel flow where power output is 0% (Cf2). Synchronous but no output. Typically 0.23 x Khhv (23% fuel flow).

ecr

1..1

Seconds

Combustion reaction time delay (Ecr).

etd

1..1

Seconds

Turbine and exhaust delay (Etd).

k3

1..1

PU

Ratio of Fuel Adjustment (K3).

k4

1..1

PU

Gain of radiation shield (K4).

k5

1..1

PU

Gain of radiation shield (K5).

k6

1..1

PU

Minimum fuel flow (K6).

kf

1..1

PU

Fuel system feedback (Kf).

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

t

1..1

Seconds

Fuel Control Time Constant (T).

t3

1..1

Seconds

Radiation shield time constant (T3).

t4

1..1

Seconds

Thermocouple time constant (T4).

t5

1..1

Seconds

Temperature control time constant (T5).

tc

1..1

Temperature

Temperature control (Tc). Unit = °F or °C depending on constants Af1 and Bf1.

tcd

1..1

Seconds

Compressor discharge time constant (Tcd).

tf

1..1

Seconds

Fuel system time constant (Tf).

tmax

1..1

PU

Maximum Turbine limit (Tmax).

tmin

1..1

PU

Minimum Turbine limit (Tmin).

tr

1..1

Temperature

Rated temperature (Tr). Unit = °C depending on parameters Af1 and Bf1.

trate

1..1

ActivePower

Turbine rating (Trate). Unit = MW.

tt

1..1

Seconds

Temperature controller integration rate (Tt).

w

1..1

PU

Governor gain (1/droop) on turbine rating (W).

x

1..1

Seconds

Governor lead time constant (X).

y

1..1

Seconds

Governor lag time constant (Y) (>0).

z

1..1

Boolean

Governor mode (Z).
true = Droop
false = ISO.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovGAST3

TurbineGovernorDynamics

Generic turbogas with acceleration and temperature controller.

Native Members

bca

1..1

Simple_Float

Acceleration limit set-point (Bca). Unit = 1/s. Typical Value = 0.01.

bp

1..1

PU

Droop (bp). Typical Value = 0.05.

dtc

1..1

Temperature

Exhaust temperature variation due to fuel flow increasing from 0 to 1 PU (deltaTc). Typical Value = 390.

ka

1..1

PU

Minimum fuel flow (Ka). Typical Value = 0.23.

kac

1..1

Simple_Float

Fuel system feedback (KAC). Typical Value = 0.

kca

1..1

Simple_Float

Acceleration control integral gain (Kca). Unit = 1/s. Typical Value = 100.

ksi

1..1

Simple_Float

Gain of radiation shield (Ksi). Typical Value = 0.8.

ky

1..1

Simple_Float

Coefficient of transfer function of fuel valve positioner (Ky). Typical Value = 1.

mnef

1..1

PU

Fuel flow maximum negative error value (MNEF). Typical Value = -0.05.

mxef

1..1

PU

Fuel flow maximum positive error value (MXEF). Typical Value = 0.05.

rcmn

1..1

PU

Minimum fuel flow (RCMN). Typical Value = -0.1.

rcmx

1..1

PU

Maximum fuel flow (RCMX). Typical Value = 1.

tac

1..1

Seconds

Fuel control time constant (Tac). Typical Value = 0.1.

tc

1..1

Seconds

Compressor discharge volume time constant (Tc). Typical Value = 0.2.

td

1..1

Seconds

Temperature controller derivative gain (Td). Typical Value = 3.3.

tfen

1..1

Temperature

Turbine rated exhaust temperature correspondent to Pm=1 PU (Tfen). Typical Value = 540.

tg

1..1

Seconds

Time constant of speed governor (Tg). Typical Value = 0.05.

tsi

1..1

Seconds

Time constant of radiation shield (Tsi). Typical Value = 15.

tt

1..1

Temperature

Temperature controller integration rate (Tt). Typical Value = 250.

ttc

1..1

Seconds

Time constant of thermocouple (Ttc). Typical Value = 2.5.

ty

1..1

Seconds

Time constant of fuel valve positioner (Ty). Typical Value = 0.2.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovGAST4

TurbineGovernorDynamics

Generic turbogas.

Native Members

bp

1..1

PU

Droop (bp). Typical Value = 0.05.

ktm

1..1

PU

Compressor gain (Ktm). Typical Value = 0.

mnef

1..1

PU

Fuel flow maximum negative error value (MNEF). Typical Value = -0.05.

mxef

1..1

PU

Fuel flow maximum positive error value (MXEF). Typical Value = 0.05.

rymn

1..1

PU

Minimum valve opening (RYMN). Typical Value = 0.

rymx

1..1

PU

Maximum valve opening (RYMX). Typical Value = 1.1.

ta

1..1

Seconds

Maximum gate opening velocity (TA). Typical Value = 3.

tc

1..1

Seconds

Maximum gate closing velocity (Tc). Typical Value = 0.5.

tcm

1..1

Seconds

Fuel control time constant (Tcm). Typical Value = 0.1.

tm

1..1

Seconds

Compressor discharge volume time constant (Tm). Typical Value = 0.2.

tv

1..1

Seconds

Time constant of fuel valve positioner (Ty). Typical Value = 0.1.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovGASTWD

TurbineGovernorDynamics

Woodward Gas turbine governor model.

Native Members

a

1..1

Simple_Float

Valve positioner (A).

af1

1..1

PU

Exhaust temperature Parameter (Af1).

af2

1..1

PU

Coefficient equal to 0.5(1-speed) (Af2).

b

1..1

Simple_Float

Valve positioner (B).

bf1

1..1

PU

(Bf1). Bf1 = E(1-w) where E (speed sensitivity coefficient) is 0.55 to 0.65 x Tr.

bf2

1..1

PU

Turbine Torque Coefficient Khhv (depends on heating value of fuel stream in combustion chamber) (Bf2).

c

1..1

Simple_Float

Valve positioner (C).

cf2

1..1

PU

Coefficient defining fuel flow where power output is 0% (Cf2). Synchronous but no output. Typically 0.23 x Khhv (23% fuel flow).

ecr

1..1

Seconds

Combustion reaction time delay (Ecr).

etd

1..1

Seconds

Turbine and exhaust delay (Etd).

k3

1..1

PU

Ratio of Fuel Adjustment (K3).

k4

1..1

PU

Gain of radiation shield (K4).

k5

1..1

PU

Gain of radiation shield (K5).

k6

1..1

PU

Minimum fuel flow (K6).

kd

1..1

PU

Drop Governor Gain (Kd).

kdroop

1..1

PU

(Kdroop).

kf

1..1

PU

Fuel system feedback (Kf).

ki

1..1

PU

Isochronous Governor Gain (Ki).

kp

1..1

PU

PID Proportional gain (Kp).

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

t

1..1

Seconds

Fuel Control Time Constant (T).

t3

1..1

Seconds

Radiation shield time constant (T3).

t4

1..1

Seconds

Thermocouple time constant (T4).

t5

1..1

Seconds

Temperature control time constant (T5).

tc

1..1

Temperature

Temperature control (Tc).

tcd

1..1

Seconds

Compressor discharge time constant (Tcd).

td

1..1

Seconds

Power transducer time constant (Td).

tf

1..1

Seconds

Fuel system time constant (Tf).

tmax

1..1

PU

Maximum Turbine limit (Tmax).

tmin

1..1

PU

Minimum Turbine limit (Tmin).

tr

1..1

Temperature

Rated temperature (Tr).

trate

1..1

ActivePower

Turbine rating (Trate). Unit = MW.

tt

1..1

Seconds

Temperature controller integration rate (Tt).

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydro1

TurbineGovernorDynamics

Basic Hydro turbine governor model.

Native Members

at

1..1

PU

Turbine gain (At) (>0). Typical Value = 1.2.

dturb

1..1

PU

Turbine damping factor (Dturb) (>=0). Typical Value = 0.5.

gmax

1..1

PU

Maximum gate opening (Gmax) (>0). Typical Value = 1.

gmin

1..1

PU

Minimum gate opening (Gmin) (>=0). Typical Value = 0.

hdam

1..1

PU

Turbine nominal head (hdam). Typical Value = 1.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

qnl

1..1

PU

No-load flow at nominal head (qnl) (>=0). Typical Value = 0.08.

rperm

1..1

PU

Permanent droop (R) (>0). Typical Value = 0.04.

rtemp

1..1

PU

Temporary droop (r) (>R). Typical Value = 0.3.

tf

1..1

Seconds

Filter time constant (Tf) (>0). Typical Value = 0.05.

tg

1..1

Seconds

Gate servo time constant (Tg) (>0). Typical Value = 0.5.

tr

1..1

Seconds

Washout time constant (Tr) (>0). Typical Value = 5.

tw

1..1

Seconds

Water inertia time constant (Tw) (>0). Typical Value = 1.

velm

1..1

Simple_Float

Maximum gate velocity (Vlem) (>0). Typical Value = 0.2.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydro2

TurbineGovernorDynamics

IEEE hydro turbine governor model represents plants with straightforward penstock configurations and hydraulic-dashpot governors.

Native Members

aturb

1..1

PU

Turbine numerator multiplier (Aturb). Typical Value = -1.

bturb

1..1

PU

Turbine denominator multiplier (Bturb). Typical Value = 0.5.

db1

1..1

Frequency

Intentional deadband width (db1). Unit = Hz. Typical Value = 0.

db2

1..1

ActivePower

Unintentional deadband (db2). Unit = MW. Typical Value = 0.

eps

1..1

Frequency

Intentional db hysteresis (eps). Unit = Hz. Typical Value = 0.

gv1

1..1

PU

Nonlinear gain point 1, PU gv (Gv1). Typical Value = 0.

gv2

1..1

PU

Nonlinear gain point 2, PU gv (Gv2). Typical Value = 0.

gv3

1..1

PU

Nonlinear gain point 3, PU gv (Gv3). Typical Value = 0.

gv4

1..1

PU

Nonlinear gain point 4, PU gv (Gv4). Typical Value = 0.

gv5

1..1

PU

Nonlinear gain point 5, PU gv (Gv5). Typical Value = 0.

gv6

1..1

PU

Nonlinear gain point 6, PU gv (Gv6). Typical Value = 0.

kturb

1..1

PU

Turbine gain (Kturb). Typical Value = 1.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

pgv1

1..1

PU

Nonlinear gain point 1, PU power (Pgv1). Typical Value = 0.

pgv2

1..1

PU

Nonlinear gain point 2, PU power (Pgv2). Typical Value = 0.

pgv3

1..1

PU

Nonlinear gain point 3, PU power (Pgv3). Typical Value = 0.

pgv4

1..1

PU

Nonlinear gain point 4, PU power (Pgv4). Typical Value = 0.

pgv5

1..1

PU

Nonlinear gain point 5, PU power (Pgv5). Typical Value = 0.

pgv6

1..1

PU

Nonlinear gain point 6, PU power (Pgv6). Typical Value = 0.

pmax

1..1

PU

Maximum gate opening (Pmax). Typical Value = 1.

pmin

1..1

PU

Minimum gate opening; (Pmin). Typical Value = 0.

rperm

1..1

PU

Permanent droop (Rperm). Typical Value = 0.05.

rtemp

1..1

PU

Temporary droop (Rtemp). Typical Value = 0.5.

tg

1..1

Seconds

Gate servo time constant (Tg). Typical Value = 0.5.

tp

1..1

Seconds

Pilot servo valve time constant (Tp). Typical Value = 0.03.

tr

1..1

Seconds

Dashpot time constant (Tr). Typical Value = 12.

tw

1..1

Seconds

Water inertia time constant (Tw). Typical Value = 2.

uc

1..1

Simple_Float

Maximum gate closing velocity (Uc) (<0). Unit = PU/sec. Typical Value = -0.1.

uo

1..1

Simple_Float

Maximum gate opening velocity (Uo). Unit = PU/sec. Typical Value = 0.1.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydro3

TurbineGovernorDynamics

Modified IEEE Hydro Governor-Turbine Model.

This model differs from that defined in the IEEE modeling guideline paper in that the limits on gate position and velocity do not permit "wind up" of the upstream signals.

Native Members

at

1..1

PU

Turbine gain (At). Typical Value = 1.2.

db1

1..1

Frequency

Intentional dead-band width (db1). Unit = Hz. Typical Value = 0.

db2

1..1

ActivePower

Unintentional dead-band (db2). Unit = MW. Typical Value = 0.

dturb

1..1

PU

Turbine damping factor (Dturb). Typical Value = 0.2.

eps

1..1

Frequency

Intentional db hysteresis (eps). Unit = Hz. Typical Value = 0.

governorControl

1..1

Boolean

Governor control flag (Cflag).
true = PID control is active
false = double derivative control is active.
Typical Value = true.

gv1

1..1

PU

Nonlinear gain point 1, PU gv (Gv1). Typical Value = 0.

gv2

1..1

PU

Nonlinear gain point 2, PU gv (Gv2). Typical Value = 0.

gv3

1..1

PU

Nonlinear gain point 3, PU gv (Gv3). Typical Value = 0.

gv4

1..1

PU

Nonlinear gain point 4, PU gv (Gv4). Typical Value = 0.

gv5

1..1

PU

Nonlinear gain point 5, PU gv (Gv5). Typical Value = 0.

gv6

1..1

PU

Nonlinear gain point 6, PU gv (Gv6). Typical Value = 0.

h0

1..1

PU

Turbine nominal head (H0). Typical Value = 1.

k1

1..1

PU

Derivative gain (K1). Typical Value = 0.01.

k2

1..1

PU

Double derivative gain, if Cflag = -1 (K2). Typical Value = 2.5.

kg

1..1

PU

Gate servo gain (Kg). Typical Value = 2.

ki

1..1

PU

Integral gain (Ki). Typical Value = 0.5.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

pgv1

1..1

PU

Nonlinear gain point 1, PU power (Pgv1). Typical Value = 0.

pgv2

1..1

PU

Nonlinear gain point 2, PU power (Pgv2). Typical Value = 0.

pgv3

1..1

PU

Nonlinear gain point 3, PU power (Pgv3). Typical Value = 0.

pgv4

1..1

PU

Nonlinear gain point 4, PU power (Pgv4). Typical Value = 0.

pgv5

1..1

PU

Nonlinear gain point 5, PU power (Pgv5). Typical Value = 0.

pgv6

1..1

PU

Nonlinear gain point 6, PU power (Pgv6). Typical Value = 0.

pmax

1..1

PU

Maximum gate opening, PU of MWbase (Pmax). Typical Value = 1.

pmin

1..1

PU

Minimum gate opening, PU of MWbase (Pmin). Typical Value = 0.

qnl

1..1

PU

No-load turbine flow at nominal head (Qnl). Typical Value = 0.08.

relec

1..1

PU

Steady-state droop, PU, for electrical power feedback (Relec). Typical Value = 0.05.

rgate

1..1

PU

Steady-state droop, PU, for governor output feedback (Rgate). Typical Value = 0.

td

1..1

Seconds

Input filter time constant (Td). Typical Value = 0.05.

tf

1..1

Seconds

Washout time constant (Tf). Typical Value = 0.1.

tp

1..1

Seconds

Gate servo time constant (Tp). Typical Value = 0.05.

tt

1..1

Seconds

Power feedback time constant (Tt). Typical Value = 0.2.

tw

1..1

Seconds

Water inertia time constant (Tw). Typical Value = 1.

velcl

1..1

Simple_Float

Maximum gate closing velocity (Velcl). Unit = PU/sec. Typical Value = -0.2.

velop

1..1

Simple_Float

Maximum gate opening velocity (Velop). Unit = PU/sec. Typical Value = 0.2.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydro4

TurbineGovernorDynamics

Hydro turbine and governor. Represents plants with straight-forward penstock configurations and hydraulic governors of traditional 'dashpot' type. This model can be used to represent simple, Francis, Pelton or Kaplan turbines.

Native Members

at

1..1

PU

Turbine gain (At). Typical Value = 1.2.

bgv0

1..1

PU

Kaplan blade servo point 0 (Bgv0). Typical Value = 0.

bgv1

1..1

PU

Kaplan blade servo point 1 (Bgv1). Typical Value = 0.

bgv2

1..1

PU

Kaplan blade servo point 2 (Bgv2).
Typical Value = 0. Typical Value Francis = 0, Kaplan = 0.1.

bgv3

1..1

PU

Kaplan blade servo point 3 (Bgv3).
Typical Value = 0. Typical Value Francis = 0, Kaplan = 0.667.

bgv4

1..1

PU

Kaplan blade servo point 4 (Bgv4).
Typical Value = 0. Typical Value Francis = 0, Kaplan = 0.9.

bgv5

1..1

PU

Kaplan blade servo point 5 (Bgv5).
Typical Value = 0. Typical Value Francis = 0, Kaplan = 1.

bmax

1..1

Simple_Float

Maximum blade adjustment factor (Bmax).
Typical Value = 0. Typical Value Francis = 0, Kaplan = 1.1276.

db1

1..1

Frequency

Intentional deadband width (db1). Unit = Hz. Typical Value = 0.

db2

1..1

ActivePower

Unintentional dead-band (db2). Unit = MW. Typical Value = 0.

dturb

1..1

PU

Turbine damping factor (Dturb). Unit = delta P (PU of MWbase) / delta speed (PU).
Typical Value = 0.5. Typical Value Francis = 1.1, Kaplan = 1.1.

eps

1..1

Frequency

Intentional db hysteresis (eps). Unit = Hz. Typical Value = 0.

gmax

1..1

PU

Maximum gate opening, PU of MWbase (Gmax). Typical Value = 1.

gmin

1..1

PU

Minimum gate opening, PU of MWbase (Gmin). Typical Value = 0.

gv0

1..1

PU

Nonlinear gain point 0, PU gv (Gv0).
Typical Value = 0. Typical Value Francis = 0.1, Kaplan = 0.1.

gv1

1..1

PU

Nonlinear gain point 1, PU gv (Gv1).
Typical Value = 0. Typical Value Francis = 0.4, Kaplan = 0.4.

gv2

1..1

PU

Nonlinear gain point 2, PU gv (Gv2).
Typical Value = 0. Typical Value Francis = 0.5, Kaplan = 0.5.

gv3

1..1

PU

Nonlinear gain point 3, PU gv (Gv3).
Typical Value = 0. Typical Value Francis = 0.7, Kaplan = 0.7.

gv4

1..1

PU

Nonlinear gain point 4, PU gv (Gv4).
Typical Value = 0. Typical Value Francis = 0.8, Kaplan = 0.8.

gv5

1..1

PU

Nonlinear gain point 5, PU gv (Gv5).
Typical Value = 0. Typical Value Francis = 0.9, Kaplan = 0.9.

hdam

1..1

PU

Head available at dam (hdam). Typical Value = 1.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pgv0

1..1

PU

Nonlinear gain point 0, PU power (Pgv0). Typical Value = 0.

pgv1

1..1

PU

Nonlinear gain point 1, PU power (Pgv1).
Typical Value = 0. Typical Value Francis = 0.42, Kaplan = 0.35.

pgv2

1..1

PU

Nonlinear gain point 2, PU power (Pgv2).
Typical Value = 0. Typical Value Francis = 0.56, Kaplan = 0.468.

pgv3

1..1

PU

Nonlinear gain point 3, PU power (Pgv3).
Typical Value = 0. Typical Value Francis = 0.8, Kaplan = 0.796.

pgv4

1..1

PU

Nonlinear gain point 4, PU power (Pgv4).
Typical Value = 0. Typical Value Francis = 0.9, Kaplan = 0.917.

pgv5

1..1

PU

Nonlinear gain point 5, PU power (Pgv5).
Typical Value = 0. Typical Value Francis = 0.97, Kaplan = 0.99.

qn1

1..1

PU

No-load flow at nominal head (Qnl).
Typical Value = 0.08. Typical Value Francis = 0, Kaplan = 0.

rperm

1..1

Seconds

Permanent droop (Rperm). Typical Value = 0.05.

rtemp

1..1

Seconds

Temporary droop (Rtemp). Typical Value = 0.3.

tblade

1..1

Seconds

Blade servo time constant (Tblade). Typical Value = 100.

tg

1..1

Seconds

Gate servo time constant (Tg) (>0). Typical Value = 0.5.

tp

1..1

Seconds

Pilot servo time constant (Tp). Typical Value = 0.1.

tr

1..1

Seconds

Dashpot time constant (Tr) (>0). Typical Value = 5.

tw

1..1

Seconds

Water inertia time constant (Tw) (>0). Typical Value = 1.

uc

1..1

Simple_Float

Max gate closing velocity (Uc). Typical Value = 0.2.

uo

1..1

Simple_Float

Max gate opening velocity (Uo). Typical Vlaue = 0.2.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroDD

TurbineGovernorDynamics

Double derivative hydro governor and turbine.

Native Members

aturb

1..1

PU

Turbine numerator multiplier (Aturb) (note 3). Typical Value = -1.

bturb

1..1

PU

Turbine denominator multiplier (Bturb) (note 3). Typical Value = 0.5.

db1

1..1

Frequency

Intentional dead-band width (db1). Unit = Hz. Typical Value = 0.

db2

1..1

ActivePower

Unintentional dead-band (db2). Unit = MW. Typical Value = 0.

eps

1..1

Frequency

Intentional db hysteresis (eps). Unit = Hz. Typical Value = 0.

gmax

1..1

PU

Maximum gate opening (Gmax). Typical Value = 0.

gmin

1..1

PU

Minimum gate opening (Gmin). Typical Value = 0.

gv1

1..1

PU

Nonlinear gain point 1, PU gv (Gv1). Typical Value = 0.

gv2

1..1

PU

Nonlinear gain point 2, PU gv (Gv2). Typical Value = 0.

gv3

1..1

PU

Nonlinear gain point 3, PU gv (Gv3). Typical Value = 0.

gv4

1..1

PU

Nonlinear gain point 4, PU gv (Gv4). Typical Value = 0.

gv5

1..1

PU

Nonlinear gain point 5, PU gv (Gv5). Typical Value = 0.

gv6

1..1

PU

Nonlinear gain point 6, PU gv (Gv6). Typical Value = 0.

inputSignal

1..1

Boolean

Input signal switch (Flag).
true = Pe input is used
false = feedback is received from CV.
Flag is normally dependent on Tt. If Tf is zero, Flag is set to false. If Tf is not zero, Flag is set to true.
Typical Value = true.

k1

1..1

PU

Single derivative gain (K1). Typical Value = 3.6.

k2

1..1

PU

Double derivative gain (K2). Typical Value = 0.2.

kg

1..1

PU

Gate servo gain (Kg). Typical Value = 3.

ki

1..1

PU

Integral gain (Ki). Typical Value = 1.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pgv1

1..1

PU

Nonlinear gain point 1, PU power (Pgv1). Typical Value = 0.

pgv2

1..1

PU

Nonlinear gain point 2, PU power (Pgv2). Typical Value = 0.

pgv3

1..1

PU

Nonlinear gain point 3, PU power (Pgv3). Typical Value = 0.

pgv4

1..1

PU

Nonlinear gain point 4, PU power (Pgv4). Typical Value = 0.

pgv5

1..1

PU

Nonlinear gain point 5, PU power (Pgv5). Typical Value = 0.

pgv6

1..1

PU

Nonlinear gain point 6, PU power (Pgv6). Typical Value = 0.

pmax

1..1

PU

Maximum gate opening, PU of MWbase (Pmax). Typical Value = 1.

pmin

1..1

PU

Minimum gate opening, PU of MWbase (Pmin). Typical Value = 0.

r

1..1

PU

Steady state droop (R). Typical Value = 0.05.

td

1..1

Seconds

Input filter time constant (Td). Typical Value = 0.

tf

1..1

Seconds

Washout time constant (Tf). Typical Value = 0.1.

tp

1..1

Seconds

Gate servo time constant (Tp). Typical Value = 0.35.

tt

1..1

Seconds

Power feedback time constant (Tt). Typical Value = 0.02.

tturb

1..1

Seconds

Turbine time constant (Tturb) (note 3). Typical Value = 0.8.

velcl

1..1

Simple_Float

Maximum gate closing velocity (Velcl). Unit = PU/sec. Typical Value = -0.14.

velop

1..1

Simple_Float

Maximum gate opening velocity (Velop). Unit = PU/sec. Typical Value = 0.09.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroFrancis

TurbineGovernorDynamics

Detailed hydro unit - Francis model. This model can be used to represent three types of governors.
A schematic of the hydraulic system of detailed hydro unit models, like Francis and Pelton, is provided in the DetailedHydroModelHydraulicSystem diagram.

Native Members

am

1..1

PU

Opening section Seff at the maximum efficiency (Am). Typical Value = 0.7.

av0

1..1

Area

Area of the surge tank (AV0). Unit = m2. Typical Value = 30.

av1

1..1

Area

Area of the compensation tank (AV1). Unit = m2. Typical Value = 700.

bp

1..1

PU

Droop (Bp). Typical Value = 0.05.

db1

1..1

Frequency

Intentional dead-band width (DB1). Unit = Hz. Typical Value = 0.

etamax

1..1

PU

Maximum efficiency (EtaMax). Typical Value = 1.05.

governorControl

1..1

FrancisGovernorControlKind

Governor control flag (Cflag). Typical Value = mechanicHydrolicTachoAccelerator.

h1

1..1

Length

Head of compensation chamber water level with respect to the level of penstock (H1). Unit = m. Typical Value = 4.

h2

1..1

Length

Head of surge tank water level with respect to the level of penstock (H2). Unit = m. Typical Value = 40.

hn

1..1

Length

Rated hydraulic head (Hn). Unit = m. Typical Value = 250.

kc

1..1

PU

Penstock loss coefficient (due to friction) (Kc). Typical Value = 0.025.

kg

1..1

PU

Water tunnel and surge chamber loss coefficient (due to friction) (Kg). Typical Value = 0.025.

kt

1..1

PU

Washout gain (Kt). Typical Value = 0.25.

qc0

1..1

PU

No-load turbine flow at nominal head (Qc0). Typical Value = 0.21.

qn

1..1

VolumeFlowRate

Rated flow (Qn). Unit = m3/s. Typical Value = 40.

ta

1..1

Seconds

Derivative gain (Ta). Typical Value = 3.

td

1..1

Seconds

Washout time constant (Td). Typical Value = 3.

ts

1..1

Seconds

Gate servo time constant (Ts). Typical Value = 0.5.

twnc

1..1

Seconds

Water inertia time constant (Twnc). Typical Value = 1.

twng

1..1

Seconds

Water tunnel and surge chamber inertia time constant (Twng). Typical Value = 3.

tx

1..1

Seconds

Derivative feedback gain (Tx). Typical Value = 1.

va

1..1

Simple_Float

Maximum gate opening velocity (Va). Unit = PU/sec. Typical Value = 0.011.

valvmax

1..1

PU

Maximum gate opening (ValvMax). Typical Value = 1.

valvmin

1..1

PU

Minimum gate opening (ValvMin). Typical Value = 0.

vc

1..1

Simple_Float

Maximum gate closing velocity (Vc). Unit = PU/sec. Typical Value = -0.011.

waterTunnelSurgeChamberSimulation

1..1

Boolean

Water tunnel and surge chamber simulation (Tflag).
true = enable of water tunnel and surge chamber simulation
false = inhibit of water tunnel and surge chamber simulation.
Typical Value = false.

zsfc

1..1

Length

Head of upper water level with respect to the level of penstock (Zsfc). Unit = m. Typical Value = 25.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroIEEE0

TurbineGovernorDynamics

IEEE Simplified Hydro Governor-Turbine Model. Used for Mechanical-Hydraulic and Electro-Hydraulic turbine governors, with our without steam feedback. Typical values given are for Mechanical-Hydraulic.

Reference: IEEE Transactions on Power Apparatus and Systems
November/December 1973, Volume PAS-92, Number 6
Dynamic Models for Steam and Hydro Turbines in Power System Studies, Page 1904.

Native Members

k

1..1

PU

Governor gain (K).

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

pmax

1..1

PU

Gate maximum (Pmax).

pmin

1..1

PU

Gate minimum (Pmin).

t1

1..1

Seconds

Governor lag time constant (T1). Typical Value = 0.25.

t2

1..1

Seconds

Governor lead time constant (T2). Typical Value = 0.

t3

1..1

Seconds

Gate actuator time constant (T3). Typical Value = 0.1.

t4

1..1

Seconds

Water starting time (T4).

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroIEEE2

TurbineGovernorDynamics

IEEE hydro turbine governor model represents plants with straightforward penstock configurations and hydraulic-dashpot governors.

Reference: IEEE Transactions on Power Apparatus and Systems
November/December 1973, Volume PAS-92, Number 6
Dynamic Models for Steam and Hydro Turbines in Power System Studies, Page 1904.

Native Members

aturb

1..1

PU

Turbine numerator multiplier (Aturb). Typical Value = -1.

bturb

1..1

PU

Turbine denominator multiplier (Bturb). Typical Value = 0.5.

gv1

1..1

PU

Nonlinear gain point 1, PU gv (Gv1). Typical Value = 0.

gv2

1..1

PU

Nonlinear gain point 2, PU gv (Gv2). Typical Value = 0.

gv3

1..1

PU

Nonlinear gain point 3, PU gv (Gv3). Typical Value = 0.

gv4

1..1

PU

Nonlinear gain point 4, PU gv (Gv4). Typical Value = 0.

gv5

1..1

PU

Nonlinear gain point 5, PU gv (Gv5). Typical Value = 0.

gv6

1..1

PU

Nonlinear gain point 6, PU gv (Gv6). Typical Value = 0.

kturb

1..1

PU

Turbine gain (Kturb). Typical Value = 1.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0). Unit = MW.

pgv1

1..1

PU

Nonlinear gain point 1, PU power (Pgv1). Typical Value = 0.

pgv2

1..1

PU

Nonlinear gain point 2, PU power (Pgv2). Typical Value = 0.

pgv3

1..1

PU

Nonlinear gain point 3, PU power (Pgv3). Typical Value = 0.

pgv4

1..1

PU

Nonlinear gain point 4, PU power (Pgv4). Typical Value = 0.

pgv5

1..1

PU

Nonlinear gain point 5, PU power (Pgv5). Typical Value = 0.

pgv6

1..1

PU

Nonlinear gain point 6, PU power (Pgv6). Typical Value = 0.

pmax

1..1

PU

Maximum gate opening (Pmax). Typical Value = 1.

pmin

1..1

PU

Minimum gate opening (Pmin). Typical Value = 0.

rperm

1..1

PU

Permanent droop (Rperm). Typical Value = 0.05.

rtemp

1..1

PU

Temporary droop (Rtemp). Typical Value = 0.5.

tg

1..1

Seconds

Gate servo time constant (Tg). Typical Value = 0.5.

tp

1..1

Seconds

Pilot servo valve time constant (Tp). Typical Value = 0.03.

tr

1..1

Seconds

Dashpot time constant (Tr). Typical Value = 12.

tw

1..1

Seconds

Water inertia time constant (Tw). Typical Value = 2.

uc

1..1

Simple_Float

Maximum gate closing velocity (Uc) (<0). Typical Value = -0.1.

uo

1..1

Simple_Float

Maximum gate opening velocity (Uo). Unit = PU/sec. Typical Value = 0.1.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroPelton

TurbineGovernorDynamics

Detailed hydro unit - Pelton model. This model can be used to represent the dynamic related to water tunnel and surge chamber.
A schematic of the hydraulic system of detailed hydro unit models, like Francis and Pelton, is located under the GovHydroFrancis class.

Native Members

av0

1..1

Area

Area of the surge tank (AV0). Unit = m2. Typical Value = 30.

av1

1..1

Area

Area of the compensation tank (AV1). Unit = m2. Typical Value = 700.

bp

1..1

PU

Droop (bp). Typical Value = 0.05.

db1

1..1

Frequency

Intentional dead-band width (DB1). Unit = Hz. Typical Value = 0.

db2

1..1

Frequency

Intentional dead-band width of valve opening error (DB2). Unit = Hz. Typical Value = 0.01.

h1

1..1

Length

Head of compensation chamber water level with respect to the level of penstock (H1). Unit = m. Typical Value = 4.

h2

1..1

Length

Head of surge tank water level with respect to the level of penstock (H2). Unit = m. Typical Value = 40.

hn

1..1

Length

Rated hydraulic head (Hn). Unit = m. Typical Value = 250.

kc

1..1

PU

Penstock loss coefficient (due to friction) (Kc). Typical Value = 0.025.

kg

1..1

PU

Water tunnel and surge chamber loss coefficient (due to friction) (Kg). Typical Value = -0.025.

qc0

1..1

PU

No-load turbine flow at nominal head (Qc0). Typical Value = 0.05.

qn

1..1

VolumeFlowRate

Rated flow (Qn). Unit = m3/s. Typical Value = 40.

simplifiedPelton

1..1

Boolean

Simplified Pelton model simulation (Sflag).
true = enable of simplified Pelton model simulation
false = enable of complete Pelton model simulation (non linear gain).
Typical Value = false.

staticCompensating

1..1

Boolean

Static compensating characteristic (Cflag).
true = enable of static compensating characteristic
false = inhibit of static compensating characteristic.
Typical Value = false.

ta

1..1

Seconds

Derivative gain (accelerometer time constant) (Ta). Typical Value = 3.

ts

1..1

Seconds

Gate servo time constant (Ts). Typical Value = 0.15.

tv

1..1

Seconds

Servomotor integrator time constant (TV). Typical Value = 0.3.

twnc

1..1

Seconds

Water inertia time constant (Twnc). Typical Value = 1.

twng

1..1

Seconds

Water tunnel and surge chamber inertia time constant (Twng). Typical Value = 3.

tx

1..1

Seconds

Electronic integrator time constant (Tx). Typical Value = 0.5.

va

1..1

Simple_Float

Maximum gate opening velocity (Va). Unit = PU/sec. Typical Value = 0.016.

valvmax

1..1

PU

Maximum gate opening (ValvMax). Typical Value = 1.

valvmin

1..1

PU

Minimum gate opening (ValvMin). Typical Value = 0.

vav

1..1

PU

Maximum servomotor valve opening velocity (Vav). Typical Value = 0.017.

vc

1..1

Simple_Float

Maximum gate closing velocity (Vc). Unit = PU/sec. Typical Value = -0.016.

vcv

1..1

PU

Maximum servomotor valve closing velocity (Vcv). Typical Value = -0.017.

waterTunnelSurgeChamberSimulation

1..1

Boolean

Water tunnel and surge chamber simulation (Tflag).
true = enable of water tunnel and surge chamber simulation
false = inhibit of water tunnel and surge chamber simulation.
Typical Value = false.

zsfc

1..1

Length

Head of upper water level with respect to the level of penstock (Zsfc). Unit = m. Typical Value = 25.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroPID

TurbineGovernorDynamics

PID governor and turbine.

Native Members

aturb

1..1

PU

Turbine numerator multiplier (Aturb) (note 3). Typical Value -1.

bturb

1..1

PU

Turbine denominator multiplier (Bturb) (note 3). Typical Value = 0.5.

db1

1..1

Frequency

Intentional dead-band width (db1). Unit = Hz. Typical Value = 0.

db2

1..1

ActivePower

Unintentional dead-band (db2). Unit = MW. Typical Value = 0.

eps

1..1

Frequency

Intentional db hysteresis (eps). Unit = Hz. Typical Value = 0.

gv1

1..1

PU

Nonlinear gain point 1, PU gv (Gv1). Typical Value = 0.

gv2

1..1

PU

Nonlinear gain point 2, PU gv (Gv2). Typical Value = 0.

gv3

1..1

PU

Nonlinear gain point 3, PU gv (Gv3). Typical Value = 0.

gv4

1..1

PU

Nonlinear gain point 4, PU gv (Gv4). Typical Value = 0.

gv5

1..1

PU

Nonlinear gain point 5, PU gv (Gv5). Typical Value = 0.

gv6

1..1

PU

Nonlinear gain point 6, PU gv (Gv6). Typical Value = 0.

inputSignal

1..1

Boolean

Input signal switch (Flag).
true = Pe input is used
false = feedback is received from CV.
Flag is normally dependent on Tt. If Tf is zero, Flag is set to false. If Tf is not zero, Flag is set to true. Typical Value = true.

kd

1..1

PU

Derivative gain (Kd). Typical Value = 1.11.

kg

1..1

PU

Gate servo gain (Kg). Typical Value = 2.5.

ki

1..1

PU

Integral gain (Ki). Typical Value = 0.36.

kp

1..1

PU

Proportional gain (Kp). Typical Value = 0.1.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pgv1

1..1

PU

Nonlinear gain point 1, PU power (Pgv1). Typical Value = 0.

pgv2

1..1

PU

Nonlinear gain point 2, PU power (Pgv2). Typical Value = 0.

pgv3

1..1

PU

Nonlinear gain point 3, PU power (Pgv3). Typical Value = 0.

pgv4

1..1

PU

Nonlinear gain point 4, PU power (Pgv4). Typical Value = 0.

pgv5

1..1

PU

Nonlinear gain point 5, PU power (Pgv5). Typical Value = 0.

pgv6

1..1

PU

Nonlinear gain point 6, PU power (Pgv6). Typical Value = 0.

pmax

1..1

PU

Maximum gate opening, PU of MWbase (Pmax). Typical Value = 1.

pmin

1..1

PU

Minimum gate opening, PU of MWbase (Pmin). Typical Value = 0.

r

1..1

PU

Steady state droop (R). Typical Value = 0.05.

td

1..1

Seconds

Input filter time constant (Td). Typical Value = 0.

tf

1..1

Seconds

Washout time constant (Tf). Typical Value = 0.1.

tp

1..1

Seconds

Gate servo time constant (Tp). Typical Value = 0.35.

tt

1..1

Seconds

Power feedback time constant (Tt). Typical Value = 0.02.

tturb

1..1

Seconds

Turbine time constant (Tturb) (note 3). Typical Value = 0.8.

velcl

1..1

Simple_Float

Maximum gate closing velocity (Velcl). Unit = PU/sec. Typical Value = -0.14.

velop

1..1

Simple_Float

Maximum gate opening velocity (Velop). Unit = PU/sec. Typical Value = 0.09.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroPID2

TurbineGovernorDynamics

Hydro turbine and governor. Represents plants with straight forward penstock configurations and "three term" electro-hydraulic governors (i.e. Woodard electronic).

Native Members

atw

1..1

PU

Factor multiplying Tw (Atw). Typical Value = 0.

d

1..1

PU

Turbine damping factor (D). Unit = delta P / delta speed. Typical Value = 0.

feedbackSignal

1..1

Boolean

Feedback signal type flag (Flag).
true = use gate position feedback signal
false = use Pe.

g0

1..1

PU

Gate opening at speed no load (G0). Typical Value = 0.

g1

1..1

PU

Intermediate gate opening (G1). Typical Value = 0.

g2

1..1

PU

Intermediate gate opening (G2). Typical Value = 0.

gmax

1..1

PU

Maximum gate opening (Gmax). Typical Value = 0.

gmin

1..1

PU

Minimum gate opening (Gmin). Typical Value = 0.

kd

1..1

PU

Derivative gain (Kd). Typical Value = 0.

ki

1..1

Simple_Float

Reset gain (Ki). Unit = PU/ sec. Typical Value = 0.

kp

1..1

PU

Proportional gain (Kp). Typical Value = 0.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

p1

1..1

PU

Power at gate opening G1 (P1). Typical Value = 0.

p2

1..1

PU

Power at gate opening G2 (P2). Typical Value = 0.

p3

1..1

PU

Power at full opened gate (P3). Typical Value = 0.

rperm

1..1

PU

Permanent drop (Rperm). Typical Value = 0.

ta

1..1

Seconds

Controller time constant (Ta) (>0). Typical Value = 0.

tb

1..1

Seconds

Gate servo time constant (Tb) (>0). Typical Value = 0.

treg

1..1

Seconds

Speed detector time constant (Treg). Typical Value = 0.

tw

1..1

Seconds

Water inertia time constant (Tw) (>0). Typical Value = 0.

velmax

1..1

Simple_Float

Maximum gate opening velocity (Velmax). Unit = PU/sec. Typical Value = 0.

velmin

1..1

Simple_Float

Maximum gate closing velocity (Velmin). Unit = PU/sec. Typical Value = 0.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroR

TurbineGovernorDynamics

Fourth order lead-lag governor and hydro turbine.

Native Members

at

1..1

PU

Turbine gain (At). Typical Value = 1.2.

db1

1..1

Frequency

Intentional dead-band width (db1). Unit = Hz. Typical Value = 0.

db2

1..1

ActivePower

Unintentional dead-band (db2). Unit = MW. Typical Value = 0.

dturb

1..1

PU

Turbine damping factor (Dturb). Typical Value = 0.2.

eps

1..1

Frequency

Intentional db hysteresis (eps). Unit = Hz. Typical Value = 0.

gmax

1..1

PU

Maximum governor output (Gmax). Typical Value = 1.05.

gmin

1..1

PU

Minimum governor output (Gmin). Typical Value = -0.05.

gv1

1..1

PU

Nonlinear gain point 1, PU gv (Gv1). Typical Value = 0.

gv2

1..1

PU

Nonlinear gain point 2, PU gv (Gv2). Typical Value = 0.

gv3

1..1

PU

Nonlinear gain point 3, PU gv (Gv3). Typical Value = 0.

gv4

1..1

PU

Nonlinear gain point 4, PU gv (Gv4). Typical Value = 0.

gv5

1..1

PU

Nonlinear gain point 5, PU gv (Gv5). Typical Value = 0.

gv6

1..1

PU

Nonlinear gain point 6, PU gv (Gv6). Typical Value = 0.

h0

1..1

PU

Turbine nominal head (H0). Typical Value = 1.

inputSignal

1..1

Boolean

Input signal switch (Flag).
true = Pe input is used
false = feedback is received from CV.
Flag is normally dependent on Tt. If Tf is zero, Flag is set to false. If Tf is not zero, Flag is set to true. Typical Value = true.

kg

1..1

PU

Gate servo gain (Kg). Typical Value = 2.

ki

1..1

PU

Integral gain (Ki). Typical Value = 0.5.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pgv1

1..1

PU

Nonlinear gain point 1, PU power (Pgv1). Typical Value = 0.

pgv2

1..1

PU

Nonlinear gain point 2, PU power (Pgv2). Typical Value = 0.

pgv3

1..1

PU

Nonlinear gain point 3, PU power (Pgv3). Typical Value = 0.

pgv4

1..1

PU

Nonlinear gain point 4, PU power (Pgv4). Typical Value = 0.

pgv5

1..1

PU

Nonlinear gain point 5, PU power (Pgv5). Typical Value = 0.

pgv6

1..1

PU

Nonlinear gain point 6, PU power (Pgv6). Typical Value = 0.

pmax

1..1

PU

Maximum gate opening, PU of MWbase (Pmax). Typical Value = 1.

pmin

1..1

PU

Minimum gate opening, PU of MWbase (Pmin). Typical Value = 0.

qnl

1..1

PU

No-load turbine flow at nominal head (Qnl). Typical Value = 0.08.

r

1..1

PU

Steady-state droop (R). Typical Value = 0.05.

t1

1..1

Seconds

Lead time constant 1 (T1). Typical Value = 1.5.

t2

1..1

Seconds

Lag time constant 1 (T2). Typical Value = 0.1.

t3

1..1

Seconds

Lead time constant 2 (T3). Typical Value = 1.5.

t4

1..1

Seconds

Lag time constant 2 (T4). Typical Value = 0.1.

t5

1..1

Seconds

Lead time constant 3 (T5). Typical Value = 0.

t6

1..1

Seconds

Lag time constant 3 (T6). Typical Value = 0.05.

t7

1..1

Seconds

Lead time constant 4 (T7). Typical Value = 0.

t8

1..1

Seconds

Lag time constant 4 (T8). Typical Value = 0.05.

td

1..1

Seconds

Input filter time constant (Td). Typical Value = 0.05.

tp

1..1

Seconds

Gate servo time constant (Tp). Typical Value = 0.05.

tt

1..1

Seconds

Power feedback time constant (Tt). Typical Value = 0.

tw

1..1

Seconds

Water inertia time constant (Tw). Typical Value = 1.

velcl

1..1

Simple_Float

Maximum gate closing velocity (Velcl). Unit = PU/sec. Typical Value = -0.2.

velop

1..1

Simple_Float

Maximum gate opening velocity (Velop). Unit = PU/sec. Typical Value = 0.2.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroWEH

TurbineGovernorDynamics

Woodward Electric Hydro Governor Model.

Native Members

db

1..1

PU

Speed Dead Band (db).

dicn

1..1

PU

Value to allow the integral controller to advance beyond the gate limits (Dicn).

dpv

1..1

PU

Value to allow the Pilot valve controller to advance beyond the gate limits (Dpv).

dturb

1..1

PU

Turbine damping factor (Dturb). Unit = delta P (PU of MWbase) / delta speed (PU).

feedbackSignal

1..1

Boolean

Feedback signal selection (Sw).
true = PID Output (if R-Perm-Gate=droop and R-Perm-Pe=0)
false = Electrical Power (if R-Perm-Gate=0 and R-Perm-Pe=droop) or
false = Gate Position (if R-Perm-Gate=droop and R-Perm-Pe=0).

fl1

1..1

PU

Flow Gate 1 (Fl1). Flow value for gate position point 1 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

fl2

1..1

PU

Flow Gate 2 (Fl2). Flow value for gate position point 2 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

fl3

1..1

PU

Flow Gate 3 (Fl3). Flow value for gate position point 3 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

fl4

1..1

PU

Flow Gate 4 (Fl4). Flow value for gate position point 4 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

fl5

1..1

PU

Flow Gate 5 (Fl5). Flow value for gate position point 5 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

fp1

1..1

PU

Flow P1 (Fp1). Turbine Flow value for point 1 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp10

1..1

PU

Flow P10 (Fp10). Turbine Flow value for point 10 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp2

1..1

PU

Flow P2 (Fp2). Turbine Flow value for point 2 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp3

1..1

PU

Flow P3 (Fp3). Turbine Flow value for point 3 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp4

1..1

PU

Flow P4 (Fp4). Turbine Flow value for point 4 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp5

1..1

PU

Flow P5 (Fp5). Turbine Flow value for point 5 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp6

1..1

PU

Flow P6 (Fp6). Turbine Flow value for point 6 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp7

1..1

PU

Flow P7 (Fp7). Turbine Flow value for point 7 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp8

1..1

PU

Flow P8 (Fp8). Turbine Flow value for point 8 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

fp9

1..1

PU

Flow P9 (Fp9). Turbine Flow value for point 9 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

gmax

1..1

PU

Maximum Gate Position (Gmax).

gmin

1..1

PU

Minimum Gate Position (Gmin).

gtmxcl

1..1

PU

Maximum gate closing rate (Gtmxcl).

gtmxop

1..1

PU

Maximum gate opening rate (Gtmxop).

gv1

1..1

PU

Gate 1 (Gv1). Gate Position value for point 1 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

gv2

1..1

PU

Gate 2 (Gv2). Gate Position value for point 2 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

gv3

1..1

PU

Gate 3 (Gv3). Gate Position value for point 3 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

gv4

1..1

PU

Gate 4 (Gv4). Gate Position value for point 4 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

gv5

1..1

PU

Gate 5 (Gv5). Gate Position value for point 5 for lookup table representing water flow through the turbine as a function of gate position to produce steady state flow.

kd

1..1

PU

Derivative controller derivative gain (Kd).

ki

1..1

PU

Derivative controller Integral gain (Ki).

kp

1..1

PU

Derivative control gain (Kp).

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pmss1

1..1

PU

Pmss Flow P1 (Pmss1). Mechanical Power output Pmss for Turbine Flow point 1 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss10

1..1

PU

Pmss Flow P10 (Pmss10). Mechanical Power output Pmss for Turbine Flow point 10 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss2

1..1

PU

Pmss Flow P2 (Pmss2). Mechanical Power output Pmss for Turbine Flow point 2 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss3

1..1

PU

Pmss Flow P3 (Pmss3). Mechanical Power output Pmss for Turbine Flow point 3 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss4

1..1

PU

Pmss Flow P4 (Pmss4). Mechanical Power output Pmss for Turbine Flow point 4 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss5

1..1

PU

Pmss Flow P5 (Pmss5). Mechanical Power output Pmss for Turbine Flow point 5 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss6

1..1

PU

Pmss Flow P6 (Pmss6). Mechanical Power output Pmss for Turbine Flow point 6 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss7

1..1

PU

Pmss Flow P7 (Pmss7). Mechanical Power output Pmss for Turbine Flow point 7 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss8

1..1

PU

Pmss Flow P8 (Pmss8). Mechanical Power output Pmss for Turbine Flow point 8 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

pmss9

1..1

PU

Pmss Flow P9 (Pmss9). Mechanical Power output Pmss for Turbine Flow point 9 for lookup table representing per unit mechanical power on machine MVA rating as a function of turbine flow.

rpg

1..1

Simple_Float

Permanent droop for governor output feedback (R-Perm-Gate).

rpp

1..1

Simple_Float

Permanent droop for electrical power feedback (R-Perm-Pe).

td

1..1

Seconds

Derivative controller time constant to limit the derivative characteristic beyond a breakdown frequency to avoid amplification of high-frequency noise (Td).

tdv

1..1

Seconds

Distributive Valve time lag time constant (Tdv).

tg

1..1

Seconds

Value to allow the Distribution valve controller to advance beyond the gate movement rate limit (Tg).

tp

1..1

Seconds

Pilot Valve time lag time constant (Tp).

tpe

1..1

Seconds

Electrical power droop time constant (Tpe).

tw

1..1

Seconds

Water inertia time constant (Tw) (>0).

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovHydroWPID

TurbineGovernorDynamics

Woodward PID Hydro Governor.

Native Members

d

1..1

PU

Turbine damping factor (D). Unit = delta P / delta speed.

gatmax

1..1

PU

Gate opening Limit Maximum (Gatmax).

gatmin

1..1

PU

Gate opening Limit Minimum (Gatmin).

gv1

1..1

PU

Gate position 1 (Gv1).

gv2

1..1

PU

Gate position 2 (Gv2).

gv3

1..1

PU

Gate position 3 (Gv3).

kd

1..1

PU

Derivative gain (Kd). Typical Value = 1.11.

ki

1..1

PU

Reset gain (Ki). Typical Value = 0.36.

kp

1..1

PU

Proportional gain (Kp). Typical Value = 0.1.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pgv1

1..1

PU

Output at Gv1 PU of MWbase (Pgv1).

pgv2

1..1

PU

Output at Gv2 PU of MWbase (Pgv2).

pgv3

1..1

PU

Output at Gv3 PU of MWbase (Pgv3).

pmax

1..1

PU

Maximum Power Output (Pmax).

pmin

1..1

PU

Minimum Power Output (Pmin).

reg

1..1

PU

Permanent drop (Reg).

ta

1..1

Seconds

Controller time constant (Ta) (>0). Typical Value = 0.

tb

1..1

Seconds

Gate servo time constant (Tb) (>0). Typical Value = 0.

treg

1..1

Seconds

Speed detector time constant (Treg).

tw

1..1

Seconds

Water inertia time constant (Tw) (>0). Typical Value = 0.

velmax

1..1

PU

Maximum gate opening velocity (Velmax). Unit = PU/sec. Typical Value = 0.

velmin

1..1

PU

Maximum gate closing velocity (Velmin). Unit = PU/sec. Typical Value = 0.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteam0

TurbineGovernorDynamics

A simplified steam turbine governor model.

Native Members

dt

1..1

PU

Turbine damping coefficient (Dt). Unit = delta P / delta speed. Typical Value = 0.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

r

1..1

PU

Permanent droop (R). Typical Value = 0.05.

t1

1..1

Seconds

Steam bowl time constant (T1). Typical Value = 0.5.

t2

1..1

Seconds

Numerator time constant of T2/T3 block (T2). Typical Value = 3.

t3

1..1

Seconds

Reheater time constant (T3). Typical Value = 10.

vmax

1..1

PU

Maximum valve position, PU of mwcap (Vmax). Typical Value = 1.

vmin

1..1

PU

Minimum valve position, PU of mwcap (Vmin). Typical Value = 0.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteam1

TurbineGovernorDynamics

Steam turbine governor model, based on the GovSteamIEEE1 model (with optional deadband and nonlinear valve gain added).

Native Members

db1

1..1

Frequency

Intentional deadband width (db1). Unit = Hz. Typical Value = 0.

db2

1..1

ActivePower

Unintentional deadband (db2). Unit = MW. Typical Value = 0.

eps

1..1

Frequency

Intentional db hysteresis (eps). Unit = Hz. Typical Value = 0.

gv1

1..1

PU

Nonlinear gain valve position point 1 (GV1). Typical Value = 0.

gv2

1..1

PU

Nonlinear gain valve position point 2 (GV2). Typical Value = 0.4.

gv3

1..1

PU

Nonlinear gain valve position point 3 (GV3). Typical Value = 0.5.

gv4

1..1

PU

Nonlinear gain valve position point 4 (GV4). Typical Value = 0.6.

gv5

1..1

PU

Nonlinear gain valve position point 5 (GV5). Typical Value = 1.

gv6

1..1

PU

Nonlinear gain valve position point 6 (GV6). Typical Value = 0.

k

1..1

PU

Governor gain (reciprocal of droop) (K) (>0). Typical Value = 25.

k1

1..1

Simple_Float

Fraction of HP shaft power after first boiler pass (K1). Typical Value = 0.2.

k2

1..1

Simple_Float

Fraction of LP shaft power after first boiler pass (K2). Typical Value = 0.

k3

1..1

Simple_Float

Fraction of HP shaft power after second boiler pass (K3). Typical Value = 0.3.

k4

1..1

Simple_Float

Fraction of LP shaft power after second boiler pass (K4). Typical Value = 0.

k5

1..1

Simple_Float

Fraction of HP shaft power after third boiler pass (K5). Typical Value = 0.5.

k6

1..1

Simple_Float

Fraction of LP shaft power after third boiler pass (K6). Typical Value = 0.

k7

1..1

Simple_Float

Fraction of HP shaft power after fourth boiler pass (K7). Typical Value = 0.

k8

1..1

Simple_Float

Fraction of LP shaft power after fourth boiler pass (K8). Typical Value = 0.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pgv1

1..1

PU

Nonlinear gain power value point 1 (Pgv1). Typical Value = 0.

pgv2

1..1

PU

Nonlinear gain power value point 2 (Pgv2). Typical Value = 0.75.

pgv3

1..1

PU

Nonlinear gain power value point 3 (Pgv3). Typical Value = 0.91.

pgv4

1..1

PU

Nonlinear gain power value point 4 (Pgv4). Typical Value = 0.98.

pgv5

1..1

PU

Nonlinear gain power value point 5 (Pgv5). Typical Value = 1.

pgv6

1..1

PU

Nonlinear gain power value point 6 (Pgv6). Typical Value = 0.

pmax

1..1

PU

Maximum valve opening (Pmax) (> Pmin). Typical Value = 1.

pmin

1..1

PU

Minimum valve opening (Pmin) (>=0). Typical Value = 0.

sdb1

1..1

Boolean

Intentional deadband indicator.
true = intentional deadband is applied
false = intentional deadband is not applied.
Typical Value = true.

sdb2

1..1

Boolean

Unintentional deadband location.
true = intentional deadband is applied before point "A"
false = intentional deadband is applied after point "A".
Typical Value = true.

t1

1..1

Seconds

Governor lag time constant (T1). Typical Value = 0.

t2

1..1

Seconds

Governor lead time constant (T2). Typical Value = 0.

t3

1..1

Seconds

Valve positioner time constant (T3) (>0). Typical Value = 0.1.

t4

1..1

Seconds

Inlet piping/steam bowl time constant (T4). Typical Value = 0.3.

t5

1..1

Seconds

Time constant of second boiler pass (T5). Typical Value = 5.

t6

1..1

Seconds

Time constant of third boiler pass (T6). Typical Value = 0.5.

t7

1..1

Seconds

Time constant of fourth boiler pass (T7). Typical Value = 0.

uc

1..1

Simple_Float

Maximum valve closing velocity (Uc) (<0). Unit = PU/sec. Typical Value = -10.

uo

1..1

Simple_Float

Maximum valve opening velocity (Uo) (>0). Unit = PU/sec. Typical Value = 1.

valve

1..1

Boolean

Nonlinear valve characteristic.
true = nonlinear valve characteristic is used
false = nonlinear valve characteristic is not used.
Typical Value = true.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteam2

TurbineGovernorDynamics

Simplified governor model.

Native Members

dbf

1..1

PU

Frequency dead band (DBF). Typical Value = 0.

k

1..1

Simple_Float

Governor gain (reciprocal of droop) (K). Typical Value = 20.

mnef

1..1

PU

Fuel flow maximum negative error value (MNEF). Typical Value = -1.

mxef

1..1

PU

Fuel flow maximum positive error value (MXEF). Typical Value = 1.

pmax

1..1

PU

Maximum fuel flow (PMAX). Typical Value = 1.

pmin

1..1

PU

Minimum fuel flow (PMIN). Typical Value = 0.

t1

1..1

Seconds

Governor lag time constant (T1) (>0). Typical Value = 0.45.

t2

1..1

Seconds

Governor lead time constant (T2) (may be 0). Typical Value = 0.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteamCC

TurbineGovernorDynamics

Cross compound turbine governor model.

Native Members

dhp

1..1

PU

HP damping factor (Dhp). Typical Value = 0.

dlp

1..1

PU

LP damping factor (Dlp). Typical Value = 0.

fhp

1..1

PU

Fraction of HP power ahead of reheater (Fhp). Typical Value = 0.3.

flp

1..1

PU

Fraction of LP power ahead of reheater (Flp). Typical Value = 0.7.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pmaxhp

1..1

PU

Maximum HP value position (Pmaxhp). Typical Value = 1.

pmaxlp

1..1

PU

Maximum LP value position (Pmaxlp). Typical Value = 1.

rhp

1..1

PU

HP governor droop (Rhp). Typical Value = 0.05.

rlp

1..1

PU

LP governor droop (Rlp). Typical Value = 0.05.

t1hp

1..1

Seconds

HP governor time constant (T1hp). Typical Value = 0.1.

t1lp

1..1

Seconds

LP governor time constant (T1lp). Typical Value = 0.1.

t3hp

1..1

Seconds

HP turbine time constant (T3hp). Typical Value = 0.1.

t3lp

1..1

Seconds

LP turbine time constant (T3lp). Typical Value = 0.1.

t4hp

1..1

Seconds

HP turbine time constant (T4hp). Typical Value = 0.1.

t4lp

1..1

Seconds

LP turbine time constant (T4lp). Typical Value = 0.1.

t5hp

1..1

Seconds

HP reheater time constant (T5hp). Typical Value = 10.

t5lp

1..1

Seconds

LP reheater time constant (T5lp). Typical Value = 10.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteamEU

TurbineGovernorDynamics

Simplified model of boiler and steam turbine with PID governor.

Native Members

chc

1..1

Simple_Float

Control valves rate closing limit (Chc). Unit = PU/sec. Typical Value = -3.3.

cho

1..1

Simple_Float

Control valves rate opening limit (Cho). Unit = PU/sec. Typical Value = 0.17.

cic

1..1

PU

Intercept valves rate closing limit (Cic). Typical Value = -2.2.

cio

1..1

PU

Intercept valves rate opening limit (Cio). Typical Value = 0.123.

db1

1..1

PU

Dead band of the frequency corrector (db1). Typical Value = 0.

db2

1..1

PU

Dead band of the speed governor (db2). Typical Value = 0.0004.

hhpmax

1..1

PU

Maximum control valve position (Hhpmax). Typical Value = 1.

ke

1..1

PU

Gain of the power controller (Ke). Typical Value = 0.65.

kfcor

1..1

PU

Gain of the frequency corrector (Kfcor). Typical Value = 20.

khp

1..1

PU

Fraction of total turbine output generated by HP part (Khp). Typical Value = 0.277.

klp

1..1

PU

Fraction of total turbine output generated by HP part (Klp). Typical Value = 0.723.

kwcor

1..1

PU

Gain of the speed governor (Kwcor). Typical Value = 20.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pmax

1..1

PU

Maximal active power of the turbine (Pmax). Typical Value = 1.

prhmax

1..1

PU

Maximum low pressure limit (Prhmax). Typical Value = 1.4.

simx

1..1

PU

Intercept valves transfer limit (Simx). Typical Value = 0.425.

tb

1..1

Seconds

Boiler time constant (Tb). Typical Value = 100.

tdp

1..1

Seconds

Derivative time constant of the power controller (Tdp). Typical Value = 0.

ten

1..1

Seconds

Electro hydraulic transducer (Ten). Typical Value = 0.1.

tf

1..1

Seconds

Frequency transducer time constant (Tf). Typical Value = 0.

tfp

1..1

Seconds

Time constant of the power controller (Tfp). Typical Value = 0.

thp

1..1

Seconds

High pressure (HP) time constant of the turbine (Thp). Typical Value = 0.31.

tip

1..1

Seconds

Integral time constant of the power controller (Tip). Typical Value = 2.

tlp

1..1

Seconds

Low pressure(LP) time constant of the turbine (Tlp). Typical Value = 0.45.

tp

1..1

Seconds

Power transducer time constant (Tp). Typical Value = 0.07.

trh

1..1

Seconds

Reheater time constant of the turbine (Trh). Typical Value = 8.

tvhp

1..1

Seconds

Control valves servo time constant (Tvhp). Typical Value = 0.1.

tvip

1..1

Seconds

Intercept valves servo time constant (Tvip). Typical Value = 0.15.

tw

1..1

Seconds

Speed transducer time constant (Tw). Typical Value = 0.02.

wfmax

1..1

PU

Upper limit for frequency correction (Wfmax). Typical Value = 0.05.

wfmin

1..1

PU

Lower limit for frequency correction (Wfmin). Typical Value = -0.05.

wmax1

1..1

PU

Emergency speed control lower limit (wmax1). Typical Value = 1.025.

wmax2

1..1

PU

Emergency speed control upper limit (wmax2). Typical Value = 1.05.

wwmax

1..1

PU

Upper limit for the speed governor (Wwmax). Typical Value = 0.1.

wwmin

1..1

PU

Lower limit for the speed governor frequency correction (Wwmin). Typical Value = -1.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteamFV2

TurbineGovernorDynamics

Steam turbine governor with reheat time constants and modeling of the effects of fast valve closing to reduce mechanical power.

Native Members

dt

1..1

PU

(Dt).

k

1..1

PU

Fraction of the turbine power developed by turbine sections not involved in fast valving (K).

mwbase

1..1

ActivePower

Alternate Base used instead of Machine base in equipment model if necessary (MWbase) (>0). Unit = MW.

r

1..1

PU

(R).

t1

1..1

Seconds

Governor time constant (T1).

t3

1..1

Seconds

Reheater time constant (T3).

ta

1..1

Seconds

Time after initial time for valve to close (Ta).

tb

1..1

Seconds

Time after initial time for valve to begin opening (Tb).

tc

1..1

Seconds

Time after initial time for valve to become fully open (Tc).

ti

1..1

Seconds

Initial time to begin fast valving (Ti).

tt

1..1

Seconds

Time constant with which power falls off after intercept valve closure (Tt).

vmax

1..1

PU

(Vmax).

vmin

1..1

PU

(Vmin).

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteamFV3

TurbineGovernorDynamics

Simplified GovSteamIEEE1 Steam turbine governor model with Prmax limit and fast valving.

Native Members

k

1..1

PU

Governor gain, (reciprocal of droop) (K). Typical Value = 20.

k1

1..1

PU

Fraction of turbine power developed after first boiler pass (K1). Typical Value = 0.2.

k2

1..1

PU

Fraction of turbine power developed after second boiler pass (K2). Typical Value = 0.2.

k3

1..1

PU

Fraction of hp turbine power developed after crossover or third boiler pass (K3). Typical Value = 0.6.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pmax

1..1

PU

Maximum valve opening, PU of MWbase (Pmax). Typical Value = 1.

pmin

1..1

PU

Minimum valve opening, PU of MWbase (Pmin). Typical Value = 0.

prmax

1..1

PU

Max. pressure in reheater (Prmax). Typical Value = 1.

t1

1..1

Seconds

Governor lead time constant (T1). Typical Value = 0.

t2

1..1

Seconds

Governor lag time constant (T2). Typical Value = 0.

t3

1..1

Seconds

Valve positioner time constant (T3). Typical Value = 0.

t4

1..1

Seconds

Inlet piping/steam bowl time constant (T4). Typical Value = 0.2.

t5

1..1

Seconds

Time constant of second boiler pass (i.e. reheater) (T5). Typical Value = 0.5.

t6

1..1

Seconds

Time constant of crossover or third boiler pass (T6). Typical Value = 10.

ta

1..1

Seconds

Time to close intercept valve (IV) (Ta). Typical Value = 0.97.

tb

1..1

Seconds

Time until IV starts to reopen (Tb). Typical Value = 0.98.

tc

1..1

Seconds

Time until IV is fully open (Tc). Typical Value = 0.99.

uc

1..1

Simple_Float

Maximum valve closing velocity (Uc). Unit = PU/sec. Typical Value = -1.

uo

1..1

Simple_Float

Maximum valve opening velocity (Uo). Unit = PU/sec. Typical Value = 0.1.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteamFV4

TurbineGovernorDynamics

Detailed electro-hydraulic governor for steam unit.

Native Members

cpsmn

1..1

PU

Minimum value of pressure regulator output (Cpsmn). Typical Value = -1.

cpsmx

1..1

PU

Maximum value of pressure regulator output (Cpsmx). Typical Value = 1.

crmn

1..1

PU

Minimum value of regulator set-point (Crmn). Typical Value = 0.

crmx

1..1

PU

Maximum value of regulator set-point (Crmx). Typical Value = 1.2.

kdc

1..1

PU

Derivative gain of pressure regulator (Kdc). Typical Value = 1.

kf1

1..1

PU

Frequency bias (reciprocal of droop) (Kf1). Typical Value = 20.

kf3

1..1

PU

Frequency control (reciprocal of droop) (Kf3). Typical Value = 20.

khp

1..1

PU

Fraction of total turbine output generated by HP part (Khp). Typical Value = 0.35.

kic

1..1

PU

Integral gain of pressure regulator (Kic). Typical Value = 0.0033.

kip

1..1

PU

Integral gain of pressure feedback regulator (Kip). Typical Value = 0.5.

kit

1..1

PU

Integral gain of electro-hydraulic regulator (Kit). Typical Value = 0.04.

kmp1

1..1

PU

First gain coefficient of intercept valves characteristic (Kmp1). Typical Value = 0.5.

kmp2

1..1

PU

Second gain coefficient of intercept valves characteristic (Kmp2). Typical Value = 3.5.

kpc

1..1

PU

Proportional gain of pressure regulator (Kpc). Typical Value = 0.5.

kpp

1..1

PU

Proportional gain of pressure feedback regulator (Kpp). Typical Value = 1.

kpt

1..1

PU

Proportional gain of electro-hydraulic regulator (Kpt). Typical Value = 0.3.

krc

1..1

PU

Maximum variation of fuel flow (Krc). Typical Value = 0.05.

ksh

1..1

PU

Pressure loss due to flow friction in the boiler tubes (Ksh). Typical Value = 0.08.

lpi

1..1

PU

Maximum negative power error (Lpi). Typical Value = -0.15.

lps

1..1

PU

Maximum positive power error (Lps). Typical Value = 0.03.

mnef

1..1

PU

Lower limit for frequency correction (MNEF). Typical Value = -0.05.

mxef

1..1

PU

Upper limit for frequency correction (MXEF). Typical Value = 0.05.

pr1

1..1

PU

First value of pressure set point static characteristic (Pr1). Typical Value = 0.2.

pr2

1..1

PU

Second value of pressure set point static characteristic, corresponding to Ps0 = 1.0 PU (Pr2). Typical Value = 0.75.

psmn

1..1

PU

Minimum value of pressure set point static characteristic (Psmn). Typical Value = 1.

rsmimn

1..1

PU

Minimum value of integral regulator (Rsmimn). Typical Value = 0.

rsmimx

1..1

PU

Maximum value of integral regulator (Rsmimx). Typical Value = 1.1.

rvgmn

1..1

PU

Minimum value of integral regulator (Rvgmn). Typical Value = 0.

rvgmx

1..1

PU

Maximum value of integral regulator (Rvgmx). Typical Value = 1.2.

srmn

1..1

PU

Minimum valve opening (Srmn). Typical Value = 0.

srmx

1..1

PU

Maximum valve opening (Srmx). Typical Value = 1.1.

srsmp

1..1

PU

Intercept valves characteristic discontinuity point (Srsmp). Typical Value = 0.43.

svmn

1..1

Simple_Float

Maximum regulator gate closing velocity (Svmn). Typical Value = -0.0333.

svmx

1..1

Simple_Float

Maximum regulator gate opening velocity (Svmx). Typical Value = 0.0333.

ta

1..1

Seconds

Control valves rate opening time (Ta). Typical Value = 0.8.

tam

1..1

Seconds

Intercept valves rate opening time (Tam). Typical Value = 0.8.

tc

1..1

Seconds

Control valves rate closing time (Tc). Typical Value = 0.5.

tcm

1..1

Seconds

Intercept valves rate closing time (Tcm). Typical Value = 0.5.

tdc

1..1

Seconds

Derivative time constant of pressure regulator (Tdc). Typical Value = 90.

tf1

1..1

Seconds

Time constant of fuel regulation (Tf1). Typical Value = 10.

tf2

1..1

Seconds

Time constant of steam chest (Tf2). Typical Value = 10.

thp

1..1

Seconds

High pressure (HP) time constant of the turbine (Thp). Typical Value = 0.15.

tmp

1..1

Seconds

Low pressure (LP) time constant of the turbine (Tmp). Typical Value = 0.4.

trh

1..1

Seconds

Reheater time constant of the turbine (Trh). Typical Value = 10.

tv

1..1

Seconds

Boiler time constant (Tv). Typical Value = 60.

ty

1..1

Seconds

Control valves servo time constant (Ty). Typical Value = 0.1.

y

1..1

PU

Coefficient of linearized equations of turbine (Stodola formulation) (Y). Typical Value = 0.13.

yhpmn

1..1

PU

Minimum control valve position (Yhpmn). Typical Value = 0.

yhpmx

1..1

PU

Maximum control valve position (Yhpmx). Typical Value = 1.1.

ympmn

1..1

PU

Minimum intercept valve position (Ympmn). Typical Value = 0.

ympmx

1..1

PU

Maximum intercept valve position (Ympmx). Typical Value = 1.1.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteamIEEE1

TurbineGovernorDynamics

IEEE steam turbine governor model.

Reference: IEEE Transactions on Power Apparatus and Systems
November/December 1973, Volume PAS-92, Number 6
Dynamic Models for Steam and Hydro Turbines in Power System Studies, Page 1904.

Parameter Notes:


  1. Per unit parameters are on base of MWbase, which is normally the MW capability of the turbine.

  2. T3 must be greater than zero. All other time constants may be zero.

  3. For a tandem-compound turbine the parameters K2, K4, K6, and K8 are ignored. For a cross-compound turbine, two generators are connected to this turbine-governor model.

  4. Each generator must be represented in the load flow by data on its own MVA base. The values of K1, K3, K5, K7 must be specified to describe the proportionate development of power on the first turbine shaft. K2, K4, K6, K8 must describe the second turbine shaft. Normally K1 + K3 + K5 + K7 = 1.0 and K2 + K4 + K6 + K8 = 1.0 (if second generator is present).

  5. The division of power between the two shafts is in proportion to the values of MVA bases of the two generators. The initial condition load flow should, therefore, have the two generators loaded to the same fraction of each one’s MVA base.

Native Members

k

1..1

PU

Governor gain (reciprocal of droop) (K) (> 0). Typical Value = 25.

k1

1..1

Simple_Float

Fraction of HP shaft power after first boiler pass (K1). Typical Value = 0.2.

k2

1..1

Simple_Float

Fraction of LP shaft power after first boiler pass (K2). Typical Value = 0.

k3

1..1

Simple_Float

Fraction of HP shaft power after second boiler pass (K3). Typical Value = 0.3.

k4

1..1

Simple_Float

Fraction of LP shaft power after second boiler pass (K4). Typical Value = 0.

k5

1..1

Simple_Float

Fraction of HP shaft power after third boiler pass (K5). Typical Value = 0.5.

k6

1..1

Simple_Float

Fraction of LP shaft power after third boiler pass (K6). Typical Value = 0.

k7

1..1

Simple_Float

Fraction of HP shaft power after fourth boiler pass (K7). Typical Value = 0.

k8

1..1

Simple_Float

Fraction of LP shaft power after fourth boiler pass (K8). Typical Value = 0.

mwbase

1..1

ActivePower

Base for power values (MWbase) (> 0).

pmax

1..1

PU

Maximum valve opening (Pmax) (> Pmin). Typical Value = 1.

pmin

1..1

PU

Minimum valve opening (Pmin) (>= 0). Typical Value = 0.

t1

1..1

Seconds

Governor lag time constant (T1). Typical Value = 0.

t2

1..1

Seconds

Governor lead time constant (T2). Typical Value = 0.

t3

1..1

Seconds

Valve positioner time constant (T3) (> 0). Typical Value = 0.1.

t4

1..1

Seconds

Inlet piping/steam bowl time constant (T4). Typical Value = 0.3.

t5

1..1

Seconds

Time constant of second boiler pass (T5). Typical Value = 5.

t6

1..1

Seconds

Time constant of third boiler pass (T6). Typical Value = 0.5.

t7

1..1

Seconds

Time constant of fourth boiler pass (T7). Typical Value = 0.

uc

1..1

Simple_Float

Maximum valve closing velocity (Uc) (< 0). Unit = PU/sec. Typical Value = -10.

uo

1..1

Simple_Float

Maximum valve opening velocity (Uo) (> 0). Unit = PU/sec. Typical Value = 1.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

GovSteamSGO

TurbineGovernorDynamics

Simplified Steam turbine governor model.

Native Members

k1

1..1

PU

One/per unit regulation (K1).

k2

1..1

PU

Fraction (K2).

k3

1..1

PU

Fraction (K3).

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pmax

1..1

PU

Upper power limit (Pmax).

pmin

1..1

Seconds

Lower power limit (Pmin).

t1

1..1

Seconds

Controller lag (T1).

t2

1..1

Seconds

Controller lead compensation (T2).

t3

1..1

Seconds

Governor lag (T3) (>0).

t4

1..1

Seconds

Delay due to steam inlet volumes associated with steam chest and inlet piping (T4).

t5

1..1

Seconds

Reheater delay including hot and cold leads (T5).

t6

1..1

Seconds

Delay due to IP-LP turbine, crossover pipes and LP end hoods (T6).

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

LoadAggregate

LoadDynamics

Standard aggregate load model comprised of static and/or dynamic components. A static load model represents the sensitivity of the real and reactive power consumed by the load to the amplitude and frequency of the bus voltage. A dynamic load model can used to represent the aggregate response of the motor components of the load.

Native Members

Inherited Members

Inheritance pass: ->LoadDynamics->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

LoadComposite

LoadDynamics

This models combines static load and induction motor load effects.
The dynamics of the motor are simplified by linearizing the induction machine equations.

Native Members

epfd

1..1

Simple_Float

Active load-frequency dependence index (dynamic) (Epfd). Typical Value = 1.5.

epfs

1..1

Simple_Float

Active load-frequency dependence index (static) (Epfs). Typical Value = 1.5.

epvd

1..1

Simple_Float

Active load-voltage dependence index (dynamic) (Epvd). Typical Value = 0.7.

epvs

1..1

Simple_Float

Active load-voltage dependence index (static) (Epvs). Typical Value = 0.7.

eqfd

1..1

Simple_Float

Reactive load-frequency dependence index (dynamic) (Eqfd). Typical Value = 0.

eqfs

1..1

Simple_Float

Reactive load-frequency dependence index (static) (Eqfs). Typical Value = 0.

eqvd

1..1

Simple_Float

Reactive load-voltage dependence index (dynamic) (Eqvd). Typical Value = 2.

eqvs

1..1

Simple_Float

Reactive load-voltage dependence index (static) (Eqvs). Typical Value = 2.

h

1..1

Seconds

Inertia constant (H). Typical Value = 2.5.

lfrac

1..1

Simple_Float

Loading factor – ratio of initial P to motor MVA base (Lfrac). Typical Value = 0.8.

pfrac

1..1

Simple_Float

Fraction of constant-power load to be represented by this motor model (Pfrac) (>=0.0 and <=1.0). Typical Value = 0.5.

Inherited Members

Inheritance pass: ->LoadDynamics->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

LoadGenericNonLinear

LoadDynamics

These load models (known also as generic non-linear dynamic (GNLD) load models) can be used in mid-term and long-term voltage stability simulations (i.e., to study voltage collapse), as they can replace a more detailed representation of aggregate load, including induction motors, thermostatically controlled and static loads.

Native Members

bs

1..1

Simple_Float

Steady state voltage index for reactive power (BS).

bt

1..1

Simple_Float

Transient voltage index for reactive power (BT).

genericNonLinearLoadModelType

1..1

GenericNonLinearLoadModelKind

Type of generic non-linear load model.

ls

1..1

Simple_Float

Steady state voltage index for active power (LS).

lt

1..1

Simple_Float

Transient voltage index for active power (LT).

pt

1..1

Simple_Float

Dynamic portion of active load (PT).

qt

1..1

Simple_Float

Dynamic portion of reactive load (QT).

tp

1..1

Seconds

Time constant of lag function of active power (TP).

tq

1..1

Seconds

Time constant of lag function of reactive power (TQ).

Inherited Members

Inheritance pass: ->LoadDynamics->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

LoadMotor

LoadDynamics

Aggregate induction motor load. This model is used to represent a fraction of an ordinary load as "induction motor load". It allows load that is treated as ordinary constant power in power flow analysis to be represented by an induction motor in dynamic simulation. If Lpp = 0. or Lpp = Lp, or Tppo = 0., only one cage is represented. Magnetic saturation is not modelled. Either a "one-cage" or "two-cage" model of the induction machine can be modelled. Magnetic saturation is not modelled.

This model is intended for representation of aggregations of many motors dispersed through a load represented at a high voltage bus but where there is no information on the characteristics of individual motors.

This model treats a fraction of the constant power part of a load as a motor. During initialisation, the initial power drawn by the motor is set equal to Pfrac times the constant P part of the static load. The remainder of the load is left as static load.

The reactive power demand of the motor is calculated during initialisation as a function of voltage at the load bus. This reactive power demand may be less than or greater than the constant Q component of the load. If the motor's reactive demand is greater than the constant Q component of the load, the model inserts a shunt capacitor at the terminal of the motor to bring its reactive demand down to equal the constant Q reactive load.
If a motor model and a static load model are both present for a load, the motor Pfrac is assumed to be subtracted from the power flow constant P load before the static load model is applied. The remainder of the load, if any, is then represented by the static load model.

Native Members

d

1..1

Simple_Float

Damping factor (D). Unit = delta P/delta speed. Typical Value = 2.

h

1..1

Seconds

Inertia constant (H) (not=0). Typical Value = 0.4.

lfac

1..1

Simple_Float

Loading factor – ratio of initial P to motor MVA base (Lfac). Typical Value = 0.8.

lp

1..1

PU

Transient reactance (Lp). Typical Value = 0.15.

lpp

1..1

PU

Subtransient reactance (Lpp). Typical Value = 0.15.

ls

1..1

PU

Synchronous reactance (Ls). Typical Value = 3.2.

pfrac

1..1

Simple_Float

Fraction of constant-power load to be represented by this motor model (Pfrac) (>=0.0 and <=1.0). Typical Value = 0.3.

ra

1..1

PU

Stator resistance (Ra). Typical Value = 0.

tbkr

1..1

Seconds

Circuit breaker operating time (Tbkr). Typical Value = 0.08.

tpo

1..1

Seconds

Transient rotor time constant (Tpo) (not=0). Typical Value = 1.

tppo

1..1

Seconds

Subtransient rotor time constant (Tppo). Typical Value = 0.02.

tv

1..1

Seconds

Voltage trip pickup time (Tv). Typical Value = 0.1.

vt

1..1

PU

Voltage threshold for tripping (Vt). Typical Value = 0.7.

LoadAggregate

[1..1]

LoadAggregate

Aggregate load to which this aggregate motor (dynamic) load belongs.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

LoadStatic

LoadDynamics

General static load model representing the sensitivity of the real and reactive power consumed by the load to the amplitude and frequency of the bus voltage.

Native Members

ep1

0..1

Simple_Float

First term voltage exponent for active power (Ep1). Used only when .staticLoadModelType = exponential.

ep2

0..1

Simple_Float

Second term voltage exponent for active power (Ep2). Used only when .staticLoadModelType = exponential.

ep3

0..1

Simple_Float

Third term voltage exponent for active power (Ep3). Used only when .staticLoadModelType = exponential.

eq1

0..1

Simple_Float

First term voltage exponent for reactive power (Eq1). Used only when .staticLoadModelType = exponential.

eq2

0..1

Simple_Float

Second term voltage exponent for reactive power (Eq2). Used only when .staticLoadModelType = exponential.

eq3

0..1

Simple_Float

Third term voltage exponent for reactive power (Eq3). Used only when .staticLoadModelType = exponential.

kp1

0..1

Simple_Float

First term voltage coefficient for active power (Kp1). Not used when .staticLoadModelType = constantZ.

kp2

0..1

Simple_Float

Second term voltage coefficient for active power (Kp2). Not used when .staticLoadModelType = constantZ.

kp3

0..1

Simple_Float

Third term voltage coefficient for active power (Kp3). Not used when .staticLoadModelType = constantZ.

kp4

0..1

Simple_Float

Frequency coefficient for active power (Kp4). Must be non-zero when .staticLoadModelType = ZIP2. Not used for all other values of .staticLoadModelType.

kpf

0..1

Simple_Float

Frequency deviation coefficient for active power (Kpf). Not used when .staticLoadModelType = constantZ.

kq1

0..1

Simple_Float

First term voltage coefficient for reactive power (Kq1). Not used when .staticLoadModelType = constantZ.

kq2

0..1

Simple_Float

Second term voltage coefficient for reactive power (Kq2). Not used when .staticLoadModelType = constantZ.

kq3

0..1

Simple_Float

Third term voltage coefficient for reactive power (Kq3). Not used when .staticLoadModelType = constantZ.

kq4

0..1

Simple_Float

Frequency coefficient for reactive power (Kq4). Must be non-zero when .staticLoadModelType = ZIP2. Not used for all other values of .staticLoadModelType.

kqf

0..1

Simple_Float

Frequency deviation coefficient for reactive power (Kqf). Not used when .staticLoadModelType = constantZ.

staticLoadModelType

1..1

StaticLoadModelKind

Type of static load model. Typical Value = constantZ.

LoadAggregate

[1..1]

LoadAggregate

Aggregate load to which this aggregate static load belongs.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

LoadUserDefined

UserDefinedModels

Load whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->LoadDynamics->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

MechanicalLoadUserDefined

UserDefinedModels

Mechanical load function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->MechanicalLoadDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see MechanicalLoadDynamics

SynchronousMachineDynamics

0..1

SynchronousMachineDynamics

see MechanicalLoadDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

MechLoad1

MechanicalLoadDynamics

Mechanical load model type 1.

Native Members

a

1..1

Simple_Float

Speed squared coefficient (a).

b

1..1

Simple_Float

Speed coefficient (b).

d

1..1

Simple_Float

Speed to the exponent coefficient (d).

e

1..1

Simple_Float

Exponent (e).

Inherited Members

Inheritance pass: ->MechanicalLoadDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see MechanicalLoadDynamics

SynchronousMachineDynamics

0..1

SynchronousMachineDynamics

see MechanicalLoadDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

OverexcitationLimiterUserDefined

UserDefinedModels

Overexcitation limiter system function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->OverexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see OverexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

OverexcLim2

OverexcitationLimiterDynamics

Different from LimIEEEOEL, LimOEL2 has a fixed pickup threshold and reduces the excitation set-point by mean of non-windup integral regulator.
Irated is the rated machine excitation current (calculated from nameplate conditions: Vnom, Pnom, CosPhinom).

Native Members

ifdlim

1..1

PU

Limit value of rated field current (IFDLIM). Typical Value = 1.05.

koi

1..1

PU

Gain Over excitation limiter (KOI). Typical Value = 0.1.

voimax

1..1

PU

Maximum error signal (VOIMAX). Typical Value = 0.

voimin

1..1

PU

Minimum error signal (VOIMIN). Typical Value = -9999.

Inherited Members

Inheritance pass: ->OverexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see OverexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

OverexcLimIEEE

OverexcitationLimiterDynamics

The over excitation limiter model is intended to represent the significant features of OELs necessary for some large-scale system studies. It is the result of a pragmatic approach to obtain a model that can be widely applied with attainable data from generator owners. An attempt to include all variations in the functionality of OELs and duplicate how they interact with the rest of the excitation systems would likely result in a level of application insufficient for the studies for which they are intended.

Reference: IEEE OEL 421.5-2005 Section 9.

Native Members

hyst

1..1

PU

OEL pickup/drop-out hysteresis (HYST). Typical Value = 0.03.

ifdlim

1..1

PU

OEL timed field current limit (IFDLIM). Typical Value = 1.05.

ifdmax

1..1

PU

OEL instantaneous field current limit (IFDMAX). Typical Value = 1.5.

itfpu

1..1

PU

OEL timed field current limiter pickup level (ITFPU). Typical Value = 1.05.

kcd

1..1

PU

OEL cooldown gain (KCD). Typical Value = 1.

kramp

1..1

Simple_Float

OEL ramped limit rate (KRAMP). Unit = PU/sec. Typical Value = 10.

Inherited Members

Inheritance pass: ->OverexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see OverexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

OverexcLimX1

OverexcitationLimiterDynamics

Field voltage over excitation limiter.

Native Members

efd1

1..1

PU

Low voltage point on the inverse time characteristic (EFD1). Typical Value = 1.1.

efd2

1..1

PU

Mid voltage point on the inverse time characteristic (EFD2). Typical Value = 1.2.

efd3

1..1

PU

High voltage point on the inverse time characteristic (EFD3). Typical Value = 1.5.

efddes

1..1

PU

Desired field voltage (EFDDES). Typical Value = 0.9.

efdrated

1..1

PU

Rated field voltage (EFDRATED). Typical Value = 1.05.

kmx

1..1

PU

Gain (KMX). Typical Value = 0.01.

t1

1..1

Seconds

Time to trip the exciter at the low voltage point on the inverse time characteristic (TIME1). Typical Value = 120.

t2

1..1

Seconds

Time to trip the exciter at the mid voltage point on the inverse time characteristic (TIME2). Typical Value = 40.

t3

1..1

Seconds

Time to trip the exciter at the high voltage point on the inverse time characteristic (TIME3). Typical Value = 15.

vlow

1..1

PU

Low voltage limit (VLOW) (>0).

Inherited Members

Inheritance pass: ->OverexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see OverexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

OverexcLimX2

OverexcitationLimiterDynamics

Field Voltage or Current overexcitation limiter designed to protect the generator field of an AC machine with automatic excitation control from overheating due to prolonged overexcitation.

Native Members

efd1

1..1

PU

Low voltage or current point on the inverse time characteristic (EFD1). Typical Value = 1.1.

efd2

1..1

PU

Mid voltage or current point on the inverse time characteristic (EFD2). Typical Value = 1.2.

efd3

1..1

PU

High voltage or current point on the inverse time characteristic (EFD3). Typical Value = 1.5.

efddes

1..1

PU

Desired field voltage if m=F or field current if m=T (EFDDES). Typical Value = 1.

efdrated

1..1

PU

Rated field voltage if m=F or field current if m=T (EFDRATED). Typical Value = 1.05.

kmx

1..1

PU

Gain (KMX). Typical Value = 0.002.

m

1..1

Boolean

(m).
true = IFD limiting
false = EFD limiting.

t1

1..1

Seconds

Time to trip the exciter at the low voltage or current point on the inverse time characteristic (TIME1). Typical Value = 120.

t2

1..1

Seconds

Time to trip the exciter at the mid voltage or current point on the inverse time characteristic (TIME2). Typical Value = 40.

t3

1..1

Seconds

Time to trip the exciter at the high voltage or current point on the inverse time characteristic (TIME3). Typical Value = 15.

vlow

1..1

PU

Low voltage limit (VLOW) (>0).

Inherited Members

Inheritance pass: ->OverexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see OverexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArControllerType1UserDefined

UserDefinedModels

Power Factor or VAr controller Type I function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->PFVArControllerType1Dynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PFVArControllerType1Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArControllerType2UserDefined

UserDefinedModels

Power Factor or VAr controller Type II function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->PFVArControllerType2Dynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PFVArControllerType2Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArType1IEEEPFController

PFVArControllerType1Dynamics

The class represents IEEE PF Controller Type 1 which operates by moving the voltage reference directly.

Reference: IEEE Standard 421.5-2005 Section 11.2.

Native Members

ovex

1..1

Boolean

Overexcitation Flag (OVEX)
true = overexcited
false = underexcited.

tpfc

1..1

Seconds

PF controller time delay (TPFC). Typical Value = 5.

vitmin

1..1

PU

Minimum machine terminal current needed to enable pf/var controller (VITMIN).

vpf

1..1

PU

Synchronous machine power factor (VPF).

vpfcbw

1..1

Simple_Float

PF controller dead band (VPFC_BW). Typical Value = 0.05.

vpfref

1..1

PU

PF controller reference (VPFREF).

vvtmax

1..1

PU

Maximum machine terminal voltage needed for pf/var controller to be enabled (VVTMAX).

vvtmin

1..1

PU

Minimum machine terminal voltage needed to enable pf/var controller (VVTMIN).

Inherited Members

Inheritance pass: ->PFVArControllerType1Dynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PFVArControllerType1Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArType1IEEEVArController

PFVArControllerType1Dynamics

The class represents IEEE VAR Controller Type 1 which operates by moving the voltage reference directly.

Reference: IEEE Standard 421.5-2005 Section 11.3.

Native Members

tvarc

1..1

Seconds

Var controller time delay (TVARC). Typical Value = 5.

vvar

1..1

PU

Synchronous machine power factor (VVAR).

vvarcbw

1..1

Simple_Float

Var controller dead band (VVARC_BW). Typical Value = 0.02.

vvarref

1..1

PU

Var controller reference (VVARREF).

vvtmax

1..1

PU

Maximum machine terminal voltage needed for pf/var controller to be enabled (VVTMAX).

vvtmin

1..1

PU

Minimum machine terminal voltage needed to enable pf/var controller (VVTMIN).

Inherited Members

Inheritance pass: ->PFVArControllerType1Dynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PFVArControllerType1Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArType2Common1

PFVArControllerType2Dynamics

Power factor / Reactive power regulator. This model represents the power factor or reactive power controller such as the Basler SCP-250. The controller measures power factor or reactive power (PU on generator rated power) and compares it with the operator's set point.

Native Members

j

1..1

Boolean

Selector (J).
true = control mode for reactive power
false = control mode for power factor.

ki

1..1

PU

Reset gain (Ki).

kp

1..1

PU

Proportional gain (Kp).

max

1..1

PU

Output limit (max).

ref

1..1

PU

Reference value of reactive power or power factor (Ref).
The reference value is initialised by this model. This initialisation may override the value exchanged by this attribute to represent a plant operator's change of the reference setting.

Inherited Members

Inheritance pass: ->PFVArControllerType2Dynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PFVArControllerType2Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArType2IEEEPFController

PFVArControllerType2Dynamics

The class represents IEEE PF Controller Type 2 which is a summing point type controller and makes up the outside loop of a two-loop system. This controller is implemented as a slow PI type controller. The voltage regulator forms the inner loop and is implemented as a fast controller.

Reference: IEEE Standard 421.5-2005 Section 11.4.

Native Members

exlon

1..1

Boolean

Overexcitation or under excitation flag (EXLON)
true = 1 (not in the overexcitation or underexcitation state, integral action is active)
false = 0 (in the overexcitation or underexcitation state, so integral action is disabled to allow the limiter to play its role).

ki

1..1

PU

Integral gain of the pf controller (KI). Typical Value = 1.

kp

1..1

PU

Proportional gain of the pf controller (KP). Typical Value = 1.

pfref

1..1

PU

Power factor reference (PFREF).

vclmt

1..1

PU

Maximum output of the pf controller (VCLMT). Typical Value = 0.1.

vref

1..1

PU

Voltage regulator reference (VREF).

vs

1..1

Simple_Float

Generator sensing voltage (VS).

Inherited Members

Inheritance pass: ->PFVArControllerType2Dynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PFVArControllerType2Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArType2IEEEVArController

PFVArControllerType2Dynamics

The class represents IEEE VAR Controller Type 2 which is a summing point type controller. It makes up the outside loop of a two-loop system. This controller is implemented as a slow PI type controller, and the voltage regulator forms the inner loop and is implemented as a fast controller.

Reference: IEEE Standard 421.5-2005 Section 11.5.

Native Members

exlon

1..1

Boolean

Overexcitation or under excitation flag (EXLON)
true = 1 (not in the overexcitation or underexcitation state, integral action is active)
false = 0 (in the overexcitation or underexcitation state, so integral action is disabled to allow the limiter to play its role).

ki

1..1

PU

Integral gain of the pf controller (KI).

kp

1..1

PU

Proportional gain of the pf controller (KP).

qref

1..1

PU

Reactive power reference (QREF).

vclmt

1..1

PU

Maximum output of the pf controller (VCLMT).

vref

1..1

PU

Voltage regulator reference (VREF).

vs

1..1

Simple_Float

Generator sensing voltage (VS).

Inherited Members

Inheritance pass: ->PFVArControllerType2Dynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PFVArControllerType2Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PowerSystemStabilizerUserDefined

UserDefinedModels

Power system stabilizer function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ProprietaryParameterDynamics

UserDefinedModels

Supports definition of one or more parameters of several different datatypes for use by proprietary user-defined models. NOTE: This class does not inherit from IdentifiedObject since it is not intended that a single instance of it be referenced by more than one proprietary user-defined model instance.

Native Members

booleanParameterValue

0..1

Boolean

Used for boolean parameter value. If this attribute is populated, integerParameterValue and floatParameterValue will not be.

floatParameterValue

0..1

Simple_Float

Used for floating point parameter value. If this attribute is populated, booleanParameterValue and integerParameterValue will not be.

integerParameterValue

0..1

Integer

Used for integer parameter value. If this attribute is populated, booleanParameterValue and floatParameterValue will not be.

parameterNumber

1..1

Integer

Sequence number of the parameter among the set of parameters associated with the related proprietary user-defined model.

LoadUserDefined

[0..1]

LoadUserDefined

Proprietary user-defined model with which this parameter is associated.

VoltageCompensatorUserDefined

[0..1]

VoltageCompensatorUserDefined

Proprietary user-defined model with which this parameter is associated.

PFVArControllerType2UserDefined

[0..1]

PFVArControllerType2UserDefined

Proprietary user-defined model with which this parameter is associated.

VoltageAdjusterUserDefined

[0..1]

VoltageAdjusterUserDefined

Proprietary user-defined model with which this parameter is associated.

PFVArControllerType1UserDefined

[0..1]

PFVArControllerType1UserDefined

Proprietary user-defined model with which this parameter is associated.

DiscontinuousExcitationControlUserDefined

[0..1]

DiscontinuousExcitationControlUserDefined

Proprietary user-defined model with which this parameter is associated.

PowerSystemStabilizerUserDefined

[0..1]

PowerSystemStabilizerUserDefined

Proprietary user-defined model with which this parameter is associated.

UnderexcitationLimiterUserDefined

[0..1]

UnderexcitationLimiterUserDefined

Proprietary user-defined model with which this parameter is associated.

OverexcitationLimiterUserDefined

[0..1]

OverexcitationLimiterUserDefined

Proprietary user-defined model with which this parameter is associated.

ExcitationSystemUserDefined

[0..1]

ExcitationSystemUserDefined

Proprietary user-defined model with which this parameter is associated.

MechanicalLoadUserDefined

[0..1]

MechanicalLoadUserDefined

Proprietary user-defined model with which this parameter is associated.

TurbineLoadControllerUserDefined

[0..1]

TurbineLoadControllerUserDefined

Proprietary user-defined model with which this parameter is associated.

TurbineGovernorUserDefined

[0..1]

TurbineGovernorUserDefined

Proprietary user-defined model with which this parameter is associated.

AsynchronousMachineUserDefined

[0..1]

AsynchronousMachineUserDefined

Proprietary user-defined model with which this parameter is associated.

SynchronousMachineUserDefined

[0..1]

SynchronousMachineUserDefined

Proprietary user-defined model with which this parameter is associated.

WindType3or4UserDefined

[0..1]

WindType3or4UserDefined

Proprietary user-defined model with which this parameter is associated.

WindType1or2UserDefined

[0..1]

WindType1or2UserDefined

Proprietary user-defined model with which this parameter is associated.

WindPlantUserDefined

[0..1]

WindPlantUserDefined

Proprietary user-defined model with which this parameter is associated.

Pss1

PowerSystemStabilizerDynamics

Italian PSS - three input PSS (speed, frequency, power).

Native Members

kf

1..1

Simple_Float

Frequency power input gain (KF). Typical Value = 5.

kpe

1..1

Simple_Float

Electric power input gain (KPE). Typical Value = 0.3.

ks

1..1

Simple_Float

PSS gain (KS). Typical Value = 1.

kw

1..1

Simple_Float

Shaft speed power input gain (KW). Typical Value = 0.

pmin

1..1

PU

Minimum power PSS enabling (PMIN). Typical Value = 0.25.

t10

1..1

Seconds

Lead/lag time constant (T10). Typical Value = 0.

t5

1..1

Seconds

Washout (T5). Typical Value = 3.5.

t6

1..1

Seconds

Filter time constant (T6). Typical Value = 0.

t7

1..1

Seconds

Lead/lag time constant (T7). Typical Value = 0.

t8

1..1

Seconds

Lead/lag time constant (T8). Typical Value = 0.

t9

1..1

Seconds

Lead/lag time constant (T9). Typical Value = 0.

tpe

1..1

Seconds

Electric power filter time constant (TPE). Typical Value = 0.05.

vadat

1..1

Boolean

Signal selector (VadAt).
true = closed (Generator Power is greater than Pmin)
false = open (Pe is smaller than Pmin).
Typical Value = true.

vsmn

1..1

PU

Stabilizer output max limit (VSMN). Typical Value = -0.06.

vsmx

1..1

PU

Stabilizer output min limit (VSMX). Typical Value = 0.06.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

Pss1A

PowerSystemStabilizerDynamics

Single input power system stabilizer. It is a modified version in order to allow representation of various vendors' implementations on PSS type 1A.

Native Members

a1

1..1

PU

Notch filter parameter (A1).

a2

1..1

PU

Notch filter parameter (A2).

a3

1..1

PU

Notch filter parameter (A3).

a4

1..1

PU

Notch filter parameter (A4).

a5

1..1

PU

Notch filter parameter (A5).

a6

1..1

PU

Notch filter parameter (A6).

a7

1..1

PU

Notch filter parameter (A7).

a8

1..1

PU

Notch filter parameter (A8).

inputSignalType

1..1

InputSignalKind

Type of input signal.

kd

1..1

Boolean

Selector (Kd).
true = e-sTdelay used
false = e-sTdelay not used.

ks

1..1

PU

Stabilizer gain (Ks).

t1

1..1

Seconds

Lead/lag time constant (T1).

t2

1..1

Seconds

Lead/lag time constant (T2).

t3

1..1

Seconds

Lead/lag time constant (T3).

t4

1..1

Seconds

Lead/lag time constant (T4).

t5

1..1

Seconds

Washout time constant (T5).

t6

1..1

Seconds

Transducer time constant (T6).

tdelay

1..1

Seconds

Time constant (Tdelay).

vcl

1..1

PU

Stabilizer input cutoff threshold (Vcl).

vcu

1..1

PU

Stabilizer input cutoff threshold (Vcu).

vrmax

1..1

PU

Maximum stabilizer output (Vrmax).

vrmin

1..1

PU

Minimum stabilizer output (Vrmin).

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

Pss2B

PowerSystemStabilizerDynamics

Modified IEEE PSS2B Model. Extra lead/lag (or rate) block added at end (up to 4 lead/lags total).

Native Members

a

1..1

Simple_Float

Numerator constant (a). Typical Value = 1.

inputSignal1Type

1..1

InputSignalKind

Type of input signal #1. Typical Value = rotorSpeed.

inputSignal2Type

1..1

InputSignalKind

Type of input signal #2. Typical Value = generatorElectricalPower.

ks1

1..1

PU

Stabilizer gain (Ks1). Typical Value = 12.

ks2

1..1

PU

Gain on signal #2 (Ks2). Typical Value = 0.2.

ks3

1..1

PU

Gain on signal #2 input before ramp-tracking filter (Ks3). Typical Value = 1.

ks4

1..1

PU

Gain on signal #2 input after ramp-tracking filter (Ks4). Typical Value = 1.

m

1..1

Integer

Denominator order of ramp tracking filter (M). Typical Value = 5.

n

1..1

Integer

Order of ramp tracking filter (N). Typical Value = 1.

t1

1..1

Seconds

Lead/lag time constant (T1). Typical Value = 0.12.

t10

1..1

Seconds

Lead/lag time constant (T10). Typical Value = 0.

t11

1..1

Seconds

Lead/lag time constant (T11). Typical Value = 0.

t2

1..1

Seconds

Lead/lag time constant (T2). Typical Value = 0.02.

t3

1..1

Seconds

Lead/lag time constant (T3). Typical Value = 0.3.

t4

1..1

Seconds

Lead/lag time constant (T4). Typical Value = 0.02.

t6

1..1

Seconds

Time constant on signal #1 (T6). Typical Value = 0.

t7

1..1

Seconds

Time constant on signal #2 (T7). Typical Value = 2.

t8

1..1

Seconds

Lead of ramp tracking filter (T8). Typical Value = 0.2.

t9

1..1

Seconds

Lag of ramp tracking filter (T9). Typical Value = 0.1.

ta

1..1

Seconds

Lead constant (Ta). Typical Value = 0.

tb

1..1

Seconds

Lag time constant (Tb). Typical Value = 0.

tw1

1..1

Seconds

First washout on signal #1 (Tw1). Typical Value = 2.

tw2

1..1

Seconds

Second washout on signal #1 (Tw2). Typical Value = 2.

tw3

1..1

Seconds

First washout on signal #2 (Tw3). Typical Value = 2.

tw4

1..1

Seconds

Second washout on signal #2 (Tw4). Typical Value = 0.

vsi1max

1..1

PU

Input signal #1 max limit (Vsi1max). Typical Value = 2.

vsi1min

1..1

PU

Input signal #1 min limit (Vsi1min). Typical Value = -2.

vsi2max

1..1

PU

Input signal #2 max limit (Vsi2max). Typical Value = 2.

vsi2min

1..1

PU

Input signal #2 min limit (Vsi2min). Typical Value = -2.

vstmax

1..1

PU

Stabilizer output max limit (Vstmax). Typical Value = 0.1.

vstmin

1..1

PU

Stabilizer output min limit (Vstmin). Typical Value = -0.1.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

Pss2ST

PowerSystemStabilizerDynamics

PTI Microprocessor-Based Stabilizer type 1.

Native Members

inputSignal1Type

1..1

InputSignalKind

Type of input signal #1. Typical Value = rotorAngularFrequencyDeviation.

inputSignal2Type

1..1

InputSignalKind

Type of input signal #2. Typical Value = generatorElectricalPower.

k1

1..1

PU

Gain (K1).

k2

1..1

PU

Gain (K2).

lsmax

1..1

PU

Limiter (Lsmax).

lsmin

1..1

PU

Limiter (Lsmin).

t1

1..1

Seconds

Time constant (T1).

t10

1..1

Seconds

Time constant (T10).

t2

1..1

Seconds

Time constant (T2).

t3

1..1

Seconds

Time constant (T3).

t4

1..1

Seconds

Time constant (T4).

t5

1..1

Seconds

Time constant (T5).

t6

1..1

Seconds

Time constant (T6).

t7

1..1

Seconds

Time constant (T7).

t8

1..1

Seconds

Time constant (T8).

t9

1..1

Seconds

Time constant (T9).

vcl

1..1

PU

Cutoff limiter (Vcl).

vcu

1..1

PU

Cutoff limiter (Vcu).

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

Pss5

PowerSystemStabilizerDynamics

Italian PSS - Detailed PSS.

Native Members

ctw2

1..1

Boolean

Selector for Second washout enabling (CTW2).
true = second washout filter is bypassed
false = second washout filter in use.
Typical Value = true.

deadband

1..1

PU

Stabilizer output dead band (DeadBand). Typical Value = 0.

isfreq

1..1

Boolean

Selector for Frequency/shaft speed input (IsFreq).
true = speed
false = frequency.
Typical Value = true.

kf

1..1

Simple_Float

Frequency/shaft speed input gain (KF). Typical Value = 5.

kpe

1..1

Simple_Float

Electric power input gain (KPE). Typical Value = 0.3.

kpss

1..1

Simple_Float

PSS gain (KPSS). Typical Value = 1.

pmm

1..1

PU

Minimum power PSS enabling (Pmn). Typical Value = 0.25.

tl1

1..1

Seconds

Lead/lag time constant (TL1). Typical Value = 0.

tl2

1..1

Seconds

Lead/lag time constant (TL2). Typical Value = 0.

tl3

1..1

Seconds

Lead/lag time constant (TL3). Typical Value = 0.

tl4

1..1

Seconds

Lead/lag time constant (TL4). Typical Value = 0.

tpe

1..1

Seconds

Electric power filter time constant (TPE). Typical Value = 0.05.

tw1

1..1

Seconds

First WashOut (Tw1). Typical Value = 3.5.

tw2

1..1

Seconds

Second WashOut (Tw2). Typical Value = 0.

vadat

1..1

Boolean

Signal selector (VadAtt).
true = closed (Generator Power is greater than Pmin)
false = open (Pe is smaller than Pmin).
Typical Value = true.

vsmn

1..1

PU

Stabilizer output max limit (VSMN). Typical Value = -0.1.

vsmx

1..1

PU

Stabilizer output min limit (VSMX). Typical Value = 0.1.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssELIN2

PowerSystemStabilizerDynamics

Power system stabilizer typically associated with ExcELIN2 (though PssIEEE2B or Pss2B can also be used).

Native Members

apss

1..1

PU

Coefficient (a_PSS). Typical Value = 0.1.

ks1

1..1

PU

Gain (Ks1). Typical Value = 1.

ks2

1..1

PU

Gain (Ks2). Typical Value = 0.1.

ppss

1..1

PU

Coefficient (p_PSS) (>=0 and <=4). Typical Value = 0.1.

psslim

1..1

PU

PSS limiter (psslim). Typical Value = 0.1.

ts1

1..1

Seconds

Time constant (Ts1). Typical Value = 0.

ts2

1..1

Seconds

Time constant (Ts2). Typical Value = 1.

ts3

1..1

Seconds

Time constant (Ts3). Typical Value = 1.

ts4

1..1

Seconds

Time constant (Ts4). Typical Value = 0.1.

ts5

1..1

Seconds

Time constant (Ts5). Typical Value = 0.

ts6

1..1

Seconds

Time constant (Ts6). Typical Value = 1.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssIEEE1A

PowerSystemStabilizerDynamics

The class represents IEEE Std 421.5-2005 type PSS1A power system stabilizer model. PSS1A is the generalized form of a PSS with a single input. Some common stabilizer input signals are speed, frequency, and power.

Reference: IEEE 1A 421.5-2005 Section 8.1.

Native Members

a1

1..1

PU

PSS signal conditioning frequency filter constant (A1). Typical Value = 0.061.

a2

1..1

PU

PSS signal conditioning frequency filter constant (A2). Typical Value = 0.0017.

inputSignalType

1..1

InputSignalKind

Type of input signal. Typical Value = rotorAngularFrequencyDeviation.

ks

1..1

PU

Stabilizer gain (Ks). Typical Value = 5.

t1

1..1

Seconds

Lead/lag time constant (T1). Typical Value = 0.3.

t2

1..1

Seconds

Lead/lag time constant (T2). Typical Value = 0.03.

t3

1..1

Seconds

Lead/lag time constant (T3). Typical Value = 0.3.

t4

1..1

Seconds

Lead/lag time constant (T4). Typical Value = 0.03.

t5

1..1

Seconds

Washout time constant (T5). Typical Value = 10.

t6

1..1

Seconds

Transducer time constant (T6). Typical Value = 0.01.

vrmax

1..1

PU

Maximum stabilizer output (Vrmax). Typical Value = 0.05.

vrmin

1..1

PU

Minimum stabilizer output (Vrmin). Typical Value = -0.05.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssIEEE2B

PowerSystemStabilizerDynamics

The class represents IEEE Std 421.5-2005 type PSS2B power system stabilizer model. This stabilizer model is designed to represent a variety of dual-input stabilizers, which normally use combinations of power and speed or frequency to derive the stabilizing signal.

Reference: IEEE 2B 421.5-2005 Section 8.2.

Native Members

inputSignal1Type

1..1

InputSignalKind

Type of input signal #1. Typical Value = rotorSpeed.

inputSignal2Type

1..1

InputSignalKind

Type of input signal #2. Typical Value = generatorElectricalPower.

ks1

1..1

PU

Stabilizer gain (Ks1). Typical Value = 12.

ks2

1..1

PU

Gain on signal #2 (Ks2). Typical Value = 0.2.

ks3

1..1

PU

Gain on signal #2 input before ramp-tracking filter (Ks3). Typical Value = 1.

m

1..1

Integer

Denominator order of ramp tracking filter (M). Typical Value = 5.

n

1..1

Integer

Order of ramp tracking filter (N). Typical Value = 1.

t1

1..1

Seconds

Lead/lag time constant (T1). Typical Value = 0.12.

t10

1..1

Seconds

Lead/lag time constant (T10). Typical Value = 0.

t11

1..1

Seconds

Lead/lag time constant (T11). Typical Value = 0.

t2

1..1

Seconds

Lead/lag time constant (T2). Typical Value = 0.02.

t3

1..1

Seconds

Lead/lag time constant (T3). Typical Value = 0.3.

t4

1..1

Seconds

Lead/lag time constant (T4). Typical Value = 0.02.

t6

1..1

Seconds

Time constant on signal #1 (T6). Typical Value = 0.

t7

1..1

Seconds

Time constant on signal #2 (T7). Typical Value = 2.

t8

1..1

Seconds

Lead of ramp tracking filter (T8). Typical Value = 0.2.

t9

1..1

Seconds

Lag of ramp tracking filter (T9). Typical Value = 0.1.

tw1

1..1

Seconds

First washout on signal #1 (Tw1). Typical Value = 2.

tw2

1..1

Seconds

Second washout on signal #1 (Tw2). Typical Value = 2.

tw3

1..1

Seconds

First washout on signal #2 (Tw3). Typical Value = 2.

tw4

1..1

Seconds

Second washout on signal #2 (Tw4). Typical Value = 0.

vsi1max

1..1

PU

Input signal #1 max limit (Vsi1max). Typical Value = 2.

vsi1min

1..1

PU

Input signal #1 min limit (Vsi1min). Typical Value = -2.

vsi2max

1..1

PU

Input signal #2 max limit (Vsi2max). Typical Value = 2.

vsi2min

1..1

PU

Input signal #2 min limit (Vsi2min). Typical Value = -2.

vstmax

1..1

PU

Stabilizer output max limit (Vstmax). Typical Value = 0.1.

vstmin

1..1

PU

Stabilizer output min limit (Vstmin). Typical Value = -0.1.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssIEEE3B

PowerSystemStabilizerDynamics

The class represents IEEE Std 421.5-2005 type PSS3B power system stabilizer model. The PSS model PSS3B has dual inputs of electrical power and rotor angular frequency deviation. The signals are used to derive an equivalent mechanical power signal.

Reference: IEEE 3B 421.5-2005 Section 8.3.

Native Members

a1

1..1

PU

Notch filter parameter (A1). Typical Value = 0.359.

a2

1..1

PU

Notch filter parameter (A2). Typical Value = 0.586.

a3

1..1

PU

Notch filter parameter (A3). Typical Value = 0.429.

a4

1..1

PU

Notch filter parameter (A4). Typical Value = 0.564.

a5

1..1

PU

Notch filter parameter (A5). Typical Value = 0.001.

a6

1..1

PU

Notch filter parameter (A6). Typical Value = 0.

a7

1..1

PU

Notch filter parameter (A7). Typical Value = 0.031.

a8

1..1

PU

Notch filter parameter (A8). Typical Value = 0.

inputSignal1Type

1..1

InputSignalKind

Type of input signal #1. Typical Value = generatorElectricalPower.

inputSignal2Type

1..1

InputSignalKind

Type of input signal #2. Typical Value = rotorSpeed.

ks1

1..1

PU

Gain on signal # 1 (Ks1). Typical Value = -0.602.

ks2

1..1

PU

Gain on signal # 2 (Ks2). Typical Value = 30.12.

t1

1..1

Seconds

Transducer time constant (T1). Typical Value = 0.012.

t2

1..1

Seconds

Transducer time constant (T2). Typical Value = 0.012.

tw1

1..1

Seconds

Washout time constant (Tw1). Typical Value = 0.3.

tw2

1..1

Seconds

Washout time constant (Tw2). Typical Value = 0.3.

tw3

1..1

Seconds

Washout time constant (Tw3). Typical Value = 0.6.

vstmax

1..1

PU

Stabilizer output max limit (Vstmax). Typical Value = 0.1.

vstmin

1..1

PU

Stabilizer output min limit (Vstmin). Typical Value = -0.1.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssIEEE4B

PowerSystemStabilizerDynamics

The class represents IEEE Std 421.5-2005 type PSS2B power system stabilizer model. The PSS4B model represents a structure based on multiple working frequency bands. Three separate bands, respectively dedicated to the low-, intermediate- and high-frequency modes of oscillations, are used in this delta-omega (speed input) PSS.

Reference: IEEE 4B 421.5-2005 Section 8.4.

Native Members

bwi

1..1

Simple_Float

Three dB bandwidth (Bwi).

kh

1..1

PU

High band gain (KH). Typical Value = 120.

kh1

1..1

PU

High band differential filter gain (KH1). Typical Value = 66.

kh11

1..1

PU

High band first lead-lag blocks coefficient (KH11). Typical Value = 1.

kh17

1..1

PU

High band first lead-lag blocks coefficient (KH17). Typical Value = 1.

kh2

1..1

PU

High band differential filter gain (KH2). Typical Value = 66.

ki

1..1

PU

Intermediate band gain (KI). Typical Value = 30.

ki1

1..1

PU

Intermediate band differential filter gain (KI1). Typical Value = 66.

ki11

1..1

PU

Intermediate band first lead-lag blocks coefficient (KI11). Typical Value = 1.

ki17

1..1

PU

Intermediate band first lead-lag blocks coefficient (KI17). Typical Value = 1.

ki2

1..1

PU

Intermediate band differential filter gain (KI2). Typical Value = 66.

kl

1..1

PU

Low band gain (KL). Typical Value = 7.5.

kl1

1..1

PU

Low band differential filter gain (KL1). Typical Value = 66.

kl11

1..1

PU

Low band first lead-lag blocks coefficient (KL11). Typical Value = 1.

kl17

1..1

PU

Low band first lead-lag blocks coefficient (KL17). Typical Value = 1.

kl2

1..1

PU

Low band differential filter gain (KL2). Typical Value = 66.

omegani

1..1

Simple_Float

Notch filter: filter frequency (omegani).

th1

1..1

Seconds

High band time constant (TH1). Typical Value = 0.01513.

th10

1..1

Seconds

High band time constant (TH10). Typical Value = 0.

th11

1..1

Seconds

High band time constant (TH11). Typical Value = 0.

th12

1..1

Seconds

High band time constant (TH12). Typical Value = 0.

th2

1..1

Seconds

High band time constant (TH2). Typical Value = 0.01816.

th3

1..1

Seconds

High band time constant (TH3). Typical Value = 0.

th4

1..1

Seconds

High band time constant (TH4). Typical Value = 0.

th5

1..1

Seconds

High band time constant (TH5). Typical Value = 0.

th6

1..1

Seconds

High band time constant (TH6). Typical Value = 0.

th7

1..1

Seconds

High band time constant (TH7). Typical Value = 0.01816.

th8

1..1

Seconds

High band time constant (TH8). Typical Value = 0.02179.

th9

1..1

Seconds

High band time constant (TH9). Typical Value = 0.

ti1

1..1

Seconds

Intermediate band time constant (TI1). Typical Value = 0.173.

ti10

1..1

Seconds

Intermediate band time constant (TI11). Typical Value = 0.

ti11

1..1

Seconds

Intermediate band time constant (TI11). Typical Value = 0.

ti12

1..1

Seconds

Intermediate band time constant (TI2). Typical Value = 0.

ti2

1..1

Seconds

Intermediate band time constant (TI2). Typical Value = 0.2075.

ti3

1..1

Seconds

Intermediate band time constant (TI3). Typical Value = 0.

ti4

1..1

Seconds

Intermediate band time constant (TI4). Typical Value = 0.

ti5

1..1

Seconds

Intermediate band time constant (TI5). Typical Value = 0.

ti6

1..1

Seconds

Intermediate band time constant (TI6). Typical Value = 0.

ti7

1..1

Seconds

Intermediate band time constant (TI7). Typical Value = 0.2075.

ti8

1..1

Seconds

Intermediate band time constant (TI8). Typical Value = 0.2491.

ti9

1..1

Seconds

Intermediate band time constant (TI9). Typical Value = 0.

tl1

1..1

Seconds

Low band time constant (TL1). Typical Value = 1.73.

tl10

1..1

Seconds

Low band time constant (TL10). Typical Value = 0.

tl11

1..1

Seconds

Low band time constant (TL11). Typical Value = 0.

tl12

1..1

Seconds

Low band time constant (TL12). Typical Value = 0.

tl2

1..1

Seconds

Low band time constant (TL2). Typical Value = 2.075.

tl3

1..1

Seconds

Low band time constant (TL3). Typical Value = 0.

tl4

1..1

Seconds

Low band time constant (TL4). Typical Value = 0.

tl5

1..1

Seconds

Low band time constant (TL5). Typical Value = 0.

tl6

1..1

Seconds

Low band time constant (TL6). Typical Value = 0.

tl7

1..1

Seconds

Low band time constant (TL7). Typical Value = 2.075.

tl8

1..1

Seconds

Low band time constant (TL8). Typical Value = 2.491.

tl9

1..1

Seconds

Low band time constant (TL9). Typical Value = 0.

vhmax

1..1

PU

High band output maximum limit (VHmax). Typical Value = 0.6.

vhmin

1..1

PU

High band output minimum limit (VHmin). Typical Value = -0.6.

vimax

1..1

PU

Intermediate band output maximum limit (VImax). Typical Value = 0.6.

vimin

1..1

PU

Intermediate band output minimum limit (VImin). Typical Value = -0.6.

vlmax

1..1

PU

Low band output maximum limit (VLmax). Typical Value = 0.075.

vlmin

1..1

PU

Low band output minimum limit (VLmin). Typical Value = -0.075.

vstmax

1..1

PU

PSS output maximum limit (VSTmax). Typical Value = 0.15.

vstmin

1..1

PU

PSS output minimum limit (VSTmin). Typical Value = -0.15.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssPTIST1

PowerSystemStabilizerDynamics

PTI Microprocessor-Based Stabilizer type 1.

Native Members

dtc

1..1

Seconds

Time step related to activation of controls (Dtc). Typical Value = 0.025.

dtf

1..1

Seconds

Time step frequency calculation (Dtf). Typical Value = 0.025.

dtp

1..1

Seconds

Time step active power calculation (Dtp). Typical Value = 0.0125.

k

1..1

PU

Gain (K). Typical Value = 9.

m

1..1

PU

(M). M=2*H. Typical Value = 5.

t1

1..1

Seconds

Time constant (T1). Typical Value = 0.3.

t2

1..1

Seconds

Time constant (T2). Typical Value = 1.

t3

1..1

Seconds

Time constant (T3). Typical Value = 0.2.

t4

1..1

Seconds

Time constant (T4). Typical Value = 0.05.

tf

1..1

Seconds

Time constant (Tf). Typical Value = 0.2.

tp

1..1

Seconds

Time constant (Tp). Typical Value = 0.2.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssPTIST3

PowerSystemStabilizerDynamics

PTI Microprocessor-Based Stabilizer type 3.

Native Members

a0

1..1

PU

Filter coefficient (A0).

a1

1..1

PU

Limiter (Al).

a2

1..1

PU

Filter coefficient (A2).

a3

1..1

PU

Filter coefficient (A3).

a4

1..1

PU

Filter coefficient (A4).

a5

1..1

PU

Filter coefficient (A5).

al

1..1

PU

Limiter (Al).

athres

1..1

PU

Threshold value above which output averaging will be bypassed (Athres). Typical Value = 0.005.

b0

1..1

PU

Filter coefficient (B0).

b1

1..1

PU

Filter coefficient (B1).

b2

1..1

PU

Filter coefficient (B2).

b3

1..1

PU

Filter coefficient (B3).

b4

1..1

PU

Filter coefficient (B4).

b5

1..1

PU

Filter coefficient (B5).

dl

1..1

PU

Limiter (Dl).

dtc

1..1

Seconds

Time step related to activation of controls (0.03 for 50 Hz) (Dtc). Typical Value = 0.025.

dtf

1..1

Seconds

Time step frequency calculation (0.03 for 50 Hz) (Dtf). Typical Value = 0.025.

dtp

1..1

Seconds

Time step active power calculation (0.015 for 50 Hz) (Dtp). Typical Value = 0.0125.

isw

1..1

Boolean

Digital/analog output switch (Isw).
true = produce analog output
false = convert to digital output, using tap selection table.

k

1..1

PU

Gain (K). Typical Value = 9.

lthres

1..1

PU

Threshold value (Lthres).

m

1..1

PU

(M). M=2*H. Typical Value = 5.

nav

1..1

Simple_Float

Number of control outputs to average (Nav) (1 <= Nav <= 16). Typical Value = 4.

ncl

1..1

Simple_Float

Number of counts at limit to active limit function (Ncl) (>0).

ncr

1..1

Simple_Float

Number of counts until reset after limit function is triggered (Ncr).

pmin

1..1

PU

(Pmin).

t1

1..1

Seconds

Time constant (T1). Typical Value = 0.3.

t2

1..1

Seconds

Time constant (T2). Typical Value = 1.

t3

1..1

Seconds

Time constant (T3). Typical Value = 0.2.

t4

1..1

Seconds

Time constant (T4). Typical Value = 0.05.

t5

1..1

Seconds

Time constant (T5).

t6

1..1

Seconds

Time constant (T6).

tf

1..1

Seconds

Time constant (Tf). Typical Value = 0.2.

tp

1..1

Seconds

Time constant (Tp). Typical Value = 0.2.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssSB4

PowerSystemStabilizerDynamics

Power sensitive stabilizer model.

Native Members

kx

1..1

PU

Gain (Kx).

ta

1..1

Seconds

Time constant (Ta).

tb

1..1

Seconds

Time constant (Tb).

tc

1..1

Seconds

Time constant (Tc).

td

1..1

Seconds

Time constant (Td).

te

1..1

Seconds

Time constant (Te).

tt

1..1

Seconds

Time constant (Tt).

tx1

1..1

Seconds

Reset time constant (Tx1).

tx2

1..1

Seconds

Time constant (Tx2).

vsmax

1..1

PU

Limiter (Vsmax).

vsmin

1..1

PU

Limiter (Vsmin).

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssSH

PowerSystemStabilizerDynamics

Model for Siemens “H infinity” power system stabilizer with generator electrical power input.

Native Members

k

1..1

PU

Main gain (K). Typical Value = 1.

k0

1..1

PU

Gain 0 (K0). Typical Value = 0.012.

k1

1..1

PU

Gain 1 (K1). Typical Value = 0.488.

k2

1..1

PU

Gain 2 (K2). Typical Value = 0.064.

k3

1..1

PU

Gain 3 (K3). Typical Value = 0.224.

k4

1..1

PU

Gain 4 (K4). Typical Value = 0.1.

t1

1..1

Seconds

Time constant 1 (T1). Typical Value = 0.076.

t2

1..1

Seconds

Time constant 2 (T2). Typical Value = 0.086.

t3

1..1

Seconds

Time constant 3 (T3). Typical Value = 1.068.

t4

1..1

Seconds

Time constant 4 (T4). Typical Value = 1.913.

td

1..1

Seconds

Input time constant (Td). Typical Value = 10.

vsmax

1..1

PU

Output maximum limit (Vsmax). Typical Value = 0.1.

vsmin

1..1

PU

Output minimum limit (Vsmin). Typical Value = -0.1.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssSK

PowerSystemStabilizerDynamics

PSS Slovakian type – three inputs.

Native Members

k1

1..1

PU

Gain P (K1). Typical Value = -0.3.

k2

1..1

PU

Gain fe (K2). Typical Value = -0.15.

k3

1..1

PU

Gain If (K3). Typical Value = 10.

t1

1..1

Seconds

Denominator time constant (T1). Typical Value = 0.3.

t2

1..1

Seconds

Filter time constant (T2). Typical Value = 0.35.

t3

1..1

Seconds

Denominator time constant (T3). Typical Value = 0.22.

t4

1..1

Seconds

Filter time constant (T4). Typical Value = 0.02.

t5

1..1

Seconds

Denominator time constant (T5). Typical Value = 0.02.

t6

1..1

Seconds

Filter time constant (T6). Typical Value = 0.02.

vsmax

1..1

PU

Stabilizer output max limit (Vsmax). Typical Value = 0.4.

vsmin

1..1

PU

Stabilizer output min limit (Vsmin). Typical Value = -0.4.

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PssWECC

PowerSystemStabilizerDynamics

Dual input Power System Stabilizer, based on IEEE type 2, with modified output limiter defined by WECC (Western Electricity Coordinating Council, USA).

Native Members

inputSignal1Type

1..1

InputSignalKind

Type of input signal #1.

inputSignal2Type

1..1

InputSignalKind

Type of input signal #2.

k1

1..1

PU

Input signal 1 gain (K1).

k2

1..1

PU

Input signal 2 gain (K2).

t1

1..1

Seconds

Input signal 1 transducer time constant (T1).

t10

1..1

Seconds

Lag time constant (T10).

t2

1..1

Seconds

Input signal 2 transducer time constant (T2).

t3

1..1

Seconds

Stabilizer washout time constant (T3).

t4

1..1

Seconds

Stabilizer washout time lag constant (T4) (>0).

t5

1..1

Seconds

Lead time constant (T5).

t6

1..1

Seconds

Lag time constant (T6).

t7

1..1

Seconds

Lead time constant (T7).

t8

1..1

Seconds

Lag time constant (T8).

t9

1..1

Seconds

Lead time constant (T9).

vcl

1..1

PU

Minimum value for voltage compensator output (VCL).

vcu

1..1

PU

Maximum value for voltage compensator output (VCU).

vsmax

1..1

PU

Maximum output signal (Vsmax).

vsmin

1..1

PU

Minimum output signal (Vsmin).

Inherited Members

Inheritance pass: ->PowerSystemStabilizerDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see PowerSystemStabilizerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

RemoteInputSignal

StandardInterconnections

Supports connection to a terminal associated with a remote bus from which an input signal of a specific type is coming.

Native Members

remoteSignalType

1..1

RemoteSignalKind

Type of input signal.

PFVArControllerType1Dynamics

[0..1]

PFVArControllerType1Dynamics

Power Factor or VAr controller Type I model using this remote input signal.

UnderexcitationLimiterDynamics

[0..1]

UnderexcitationLimiterDynamics

Underexcitation limiter model using this remote input signal.

VoltageCompensatorDynamics

[0..1]

VoltageCompensatorDynamics

Voltage compensator model using this remote input signal.

PowerSystemStabilizerDynamics

[0..1]

PowerSystemStabilizerDynamics

Power system stabilizer model using this remote input signal.

DiscontinuousExcitationControlDynamics

[0..1]

DiscontinuousExcitationControlDynamics

Discontinuous excitation control model using this remote input signal.

Terminal

[1..1]

Terminal

Remote terminal with which this input signal is associated.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

SynchronousMachineEquivalentCircuit

SynchronousMachineDynamics

The electrical equations for all variations of the synchronous models are based on the SynchronousEquivalentCircuit diagram for the direct and quadrature axes.

Equations for conversion between Equivalent Circuit and Time Constant Reactance forms:
Xd = Xad + Xl
X’d = Xl + Xad * Xfd / (Xad + Xfd)
X”d = Xl + Xad * Xfd * X1d / (Xad * Xfd + Xad * X1d + Xfd * X1d)
Xq = Xaq + Xl
X’q = Xl + Xaq * X1q / (Xaq+ X1q)
X”q = Xl + Xaq * X1q* X2q / (Xaq * X1q + Xaq * X2q + X1q * X2q)
T’do = (Xad + Xfd) / (omega0 * Rfd)
T”do = (Xad * Xfd + Xad * X1d + Xfd * X1d) / (omega0 * R1d * (Xad + Xfd)
T’qo = (Xaq + X1q) / (omega0 * R1q)
T”qo = (Xaq * X1q + Xaq * X2q + X1q * X2q)/ (omega0 * R2q * (Xaq + X1q)

Same equations using CIM attributes from SynchronousMachineTimeConstantReactance class on left of = sign and SynchronousMachineEquivalentCircuit class on right (except as noted):
xDirectSync = xad + RotatingMachineDynamics.statorLeakageReactance
xDirectTrans = RotatingMachineDynamics.statorLeakageReactance + xad * xfd / (xad + xfd)
xDirectSubtrans = RotatingMachineDynamics.statorLeakageReactance + xad * xfd * x1d / (xad * xfd + xad * x1d + xfd * x1d)
xQuadSync = xaq + RotatingMachineDynamics.statorLeakageReactance
xQuadTrans = RotatingMachineDynamics.statorLeakageReactance + xaq * x1q / (xaq+ x1q)
xQuadSubtrans = RotatingMachineDynamics.statorLeakageReactance + xaq * x1q* x2q / (xaq * x1q + xaq * x2q + x1q * x2q)
tpdo = (xad + xfd) / (2*pi*nominal frequency * rfd)
tppdo = (xad * xfd + xad * x1d + xfd * x1d) / (2*pi*nominal frequency * r1d * (xad + xfd)
tpqo = (xaq + x1q) / (2*pi*nominal frequency * r1q)
tppqo = (xaq * x1q + xaq * x2q + x1q * x2q)/ (2*pi*nominal frequency * r2q * (xaq + x1q).

Are only valid for a simplified model where "Canay" reactance is zero.

Native Members

r1d

0..1

PU

D-axis damper 1 winding resistance.

r1q

0..1

PU

Q-axis damper 1 winding resistance.

r2q

0..1

PU

Q-axis damper 2 winding resistance.

rfd

0..1

PU

Field winding resistance.

x1d

0..1

PU

D-axis damper 1 winding leakage reactance.

x1q

0..1

PU

Q-axis damper 1 winding leakage reactance.

x2q

0..1

PU

Q-axis damper 2 winding leakage reactance.

xad

0..1

PU

D-axis mutual reactance.

xaq

0..1

PU

Q-axis mutual reactance.

xf1d

0..1

PU

Differential mutual (“Canay”) reactance.

xfd

0..1

PU

Field winding leakage reactance.

Inherited Members

Inheritance pass: ->SynchronousMachineDetailed->SynchronousMachineDynamics->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

efdBaseRatio

0..1

Simple_Float

see SynchronousMachineDetailed

ifdBaseType

0..1

IfdBaseKind

see SynchronousMachineDetailed

ifdBaseValue

0..1

CurrentFlow

see SynchronousMachineDetailed

saturationFactor120QAxis

0..1

Simple_Float

see SynchronousMachineDetailed

saturationFactorQAxis

0..1

Simple_Float

see SynchronousMachineDetailed

SynchronousMachine

1..1

SynchronousMachine

see SynchronousMachineDynamics

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

SynchronousMachineSimplified

SynchronousMachineDynamics

The simplified model represents a synchronous generator as a constant internal voltage behind an impedance (Rs + jXp) as shown in the Simplified diagram.

Since internal voltage is held constant, there is no Efd input and any excitation system model will be ignored. There is also no Ifd output.

This model should not be used for representing a real generator except, perhaps, small generators whose response is insignificant.

The parameters used for the Simplified model include:

Inherited Members

Inheritance pass: ->SynchronousMachineDynamics->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachine

1..1

SynchronousMachine

see SynchronousMachineDynamics

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

SynchronousMachineTimeConstantReactance

SynchronousMachineDynamics

Synchronous machine detailed modelling types are defined by the combination of the attributes SynchronousMachineTimeConstantReactance.modelType and SynchronousMachineTimeConstantReactance.rotorType.

Parameter notes:


  1. The “p” in the time-related attribute names is a substitution for a “prime” in the usual parameter notation, e.g. tpdo refers to T'do.



The parameters used for models expressed in time constant reactance form include:

Native Members

ks

0..1

Simple_Float

Saturation loading correction factor (Ks) (>= 0). Used only by Type J model. Typical Value = 0.

modelType

1..1

SynchronousMachineModelKind

Type of synchronous machine model used in Dynamic simulation applications.

rotorType

1..1

RotorKind

Type of rotor on physical machine.

tc

0..1

Seconds

Damping time constant for “Canay” reactance. Typical Value = 0.

tpdo

0..1

Seconds

Direct-axis transient rotor time constant (T'do) (> T''do). Typical Value = 5.

tppdo

0..1

Seconds

Direct-axis subtransient rotor time constant (T''do) (> 0). Typical Value = 0.03.

tppqo

0..1

Seconds

Quadrature-axis subtransient rotor time constant (T''qo) (> 0). Typical Value = 0.03.

tpqo

0..1

Seconds

Quadrature-axis transient rotor time constant (T'qo) (> T''qo). Typical Value = 0.5.

xDirectSubtrans

0..1

PU

Direct-axis subtransient reactance (unsaturated) (X''d) (> Xl). Typical Value = 0.2.

xDirectSync

0..1

PU

Direct-axis synchronous reactance (Xd) (>= X'd).
The quotient of a sustained value of that AC component of armature voltage that is produced by the total direct-axis flux due to direct-axis armature current and the value of the AC component of this current, the machine running at rated speed. Typical Value = 1.8.

xDirectTrans

0..1

PU

Direct-axis transient reactance (unsaturated) (X'd) (> =X''d). Typical Value = 0.5.

xQuadSubtrans

0..1

PU

Quadrature-axis subtransient reactance (X''q) (> Xl). Typical Value = 0.2.

xQuadSync

0..1

PU

Quadrature-axis synchronous reactance (Xq) (> =X'q).
The ratio of the component of reactive armature voltage, due to the quadrature-axis component of armature current, to this component of current, under steady state conditions and at rated frequency. Typical Value = 1.6.

xQuadTrans

0..1

PU

Quadrature-axis transient reactance (X'q) (> =X''q). Typical Value = 0.3.

Inherited Members

Inheritance pass: ->SynchronousMachineDetailed->SynchronousMachineDynamics->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

efdBaseRatio

0..1

Simple_Float

see SynchronousMachineDetailed

ifdBaseType

0..1

IfdBaseKind

see SynchronousMachineDetailed

ifdBaseValue

0..1

CurrentFlow

see SynchronousMachineDetailed

saturationFactor120QAxis

0..1

Simple_Float

see SynchronousMachineDetailed

saturationFactorQAxis

0..1

Simple_Float

see SynchronousMachineDetailed

SynchronousMachine

1..1

SynchronousMachine

see SynchronousMachineDynamics

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

SynchronousMachineUserDefined

UserDefinedModels

Synchronous machine whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->SynchronousMachineDynamics->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachine

1..1

SynchronousMachine

see SynchronousMachineDynamics

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

TurbineGovernorUserDefined

UserDefinedModels

Turbine-governor function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->TurbineGovernorDynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

0..1

AsynchronousMachineDynamics

see TurbineGovernorDynamics

SynchronousMachineDynamics

0..*

SynchronousMachineDynamics

see TurbineGovernorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

TurbineLoadControllerUserDefined

UserDefinedModels

Turbine load controller function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->TurbineLoadControllerDynamics->DynamicsFunctionBlock->IdentifiedObject

TurbineGovernorDynamics

1..1

TurbineGovernorDynamics

see TurbineLoadControllerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

TurbLCFB1

TurbineLoadControllerDynamics

Turbine Load Controller model developed in the WECC. This model represents a supervisory turbine load controller that acts to maintain turbine power at a set value by continuous adjustment of the turbine governor speed-load reference. This model is intended to represent slow reset 'outer loop' controllers managing the action of the turbine governor.

Native Members

db

1..1

PU

Controller dead band (db). Typical Value = 0.

emax

1..1

PU

Maximum control error (Emax) (note 4). Typical Value = 0.02.

fb

1..1

PU

Frequency bias gain (Fb). Typical Value = 0.

fbf

1..1

Boolean

Frequency bias flag (Fbf).
true = enable frequency bias
false = disable frequency bias.
Typical Value = false.

irmax

1..1

PU

Maximum turbine speed/load reference bias (Irmax) (note 3). Typical Value = 0.

ki

1..1

PU

Integral gain (Ki). Typical Value = 0.

kp

1..1

PU

Proportional gain (Kp). Typical Value = 0.

mwbase

1..1

ActivePower

Base for power values (MWbase) (>0). Unit = MW.

pbf

1..1

Boolean

Power controller flag (Pbf).
true = enable load controller
false = disable load controller.
Typical Value = false.

pmwset

1..1

ActivePower

Power controller setpoint (Pmwset) (note 1). Unit = MW. Typical Value = 0.

speedReferenceGovernor

1..1

Boolean

Type of turbine governor reference (Type).
true = speed reference governor
false = load reference governor.
Typical Value = true.

tpelec

1..1

Seconds

Power transducer time constant (Tpelec). Typical Value = 0.

Inherited Members

Inheritance pass: ->TurbineLoadControllerDynamics->DynamicsFunctionBlock->IdentifiedObject

TurbineGovernorDynamics

1..1

TurbineGovernorDynamics

see TurbineLoadControllerDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

UnderexcitationLimiterUserDefined

UserDefinedModels

Underexcitation limiter function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->UnderexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see UnderexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

UnderexcLim2Simplified

UnderexcitationLimiterDynamics

This model can be derived from UnderexcLimIEEE2.
The limit characteristic (look –up table) is a single straight-line, the same as UnderexcLimIEEE2 (see Figure 10.4 (p 32), IEEE 421.5-2005 Section 10.2).

Native Members

kui

1..1

PU

Gain Under excitation limiter (Kui). Typical Value = 0.1.

p0

1..1

PU

Segment P initial point (P0). Typical Value = 0.

p1

1..1

PU

Segment P end point (P1). Typical Value = 1.

q0

1..1

PU

Segment Q initial point (Q0). Typical Value = -0.31.

q1

1..1

PU

Segment Q end point (Q1). Typical Value = -0.1.

vuimax

1..1

PU

Maximum error signal (VUImax). Typical Value = 1.

vuimin

1..1

PU

Minimum error signal (VUImin). Typical Value = 0.

Inherited Members

Inheritance pass: ->UnderexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see UnderexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

UnderexcLimIEEE1

UnderexcitationLimiterDynamics

The class represents the Type UEL1 model which has a circular limit boundary when plotted in terms of machine reactive power vs. real power output.

Reference: IEEE UEL1 421.5-2005 Section 10.1.

Native Members

kuc

1..1

PU

UEL center setting (KUC). Typical Value = 1.38.

kuf

1..1

PU

UEL excitation system stabilizer gain (KUF). Typical Value = 3.3.

kui

1..1

PU

UEL integral gain (KUI). Typical Value = 0.

kul

1..1

PU

UEL proportional gain (KUL). Typical Value = 100.

kur

1..1

PU

UEL radius setting (KUR). Typical Value = 1.95.

tu1

1..1

Seconds

UEL lead time constant (TU1). Typical Value = 0.

tu2

1..1

Seconds

UEL lag time constant (TU2). Typical Value = 0.05.

tu3

1..1

Seconds

UEL lead time constant (TU3). Typical Value = 0.

tu4

1..1

Seconds

UEL lag time constant (TU4). Typical Value = 0.

vucmax

1..1

PU

UEL maximum limit for operating point phasor magnitude (VUCMAX). Typical Value = 5.8.

vuimax

1..1

PU

UEL integrator output maximum limit (VUIMAX).

vuimin

1..1

PU

UEL integrator output minimum limit (VUIMIN).

vulmax

1..1

PU

UEL output maximum limit (VULMAX). Typical Value = 18.

vulmin

1..1

PU

UEL output minimum limit (VULMIN). Typical Value = -18.

vurmax

1..1

PU

UEL maximum limit for radius phasor magnitude (VURMAX). Typical Value = 5.8.

Inherited Members

Inheritance pass: ->UnderexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see UnderexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

UnderexcLimIEEE2

UnderexcitationLimiterDynamics

The class represents the Type UEL2 which has either a straight-line or multi-segment characteristic when plotted in terms of machine reactive power output vs. real power output.

Reference: IEEE UEL2 421.5-2005 Section 10.2. (Limit characteristic lookup table shown in Figure 10.4 (p 32) of the standard).

Native Members

k1

1..1

Simple_Float

UEL terminal voltage exponent applied to real power input to UEL limit look-up table (k1). Typical Value = 2.

k2

1..1

Simple_Float

UEL terminal voltage exponent applied to reactive power output from UEL limit look-up table (k2). Typical Value = 2.

kfb

1..1

PU

Gain associated with optional integrator feedback input signal to UEL (KFB). Typical Value = 0.

kuf

1..1

PU

UEL excitation system stabilizer gain (KUF). Typical Value = 0.

kui

1..1

PU

UEL integral gain (KUI). Typical Value = 0.5.

kul

1..1

PU

UEL proportional gain (KUL). Typical Value = 0.8.

p0

1..1

PU

Real power values for endpoints (P0). Typical Value = 0.

p1

1..1

PU

Real power values for endpoints (P1). Typical Value = 0.3.

p10

1..1

PU

Real power values for endpoints (P10).

p2

1..1

PU

Real power values for endpoints (P2). Typical Value = 0.6.

p3

1..1

PU

Real power values for endpoints (P3). Typical Value = 0.9.

p4

1..1

PU

Real power values for endpoints (P4). Typical Value = 1.02.

p5

1..1

PU

Real power values for endpoints (P5).

p6

1..1

PU

Real power values for endpoints (P6).

p7

1..1

PU

Real power values for endpoints (P7).

p8

1..1

PU

Real power values for endpoints (P8).

p9

1..1

PU

Real power values for endpoints (P9).

q0

1..1

PU

Reactive power values for endpoints (Q0). Typical Value = -0.31.

q1

1..1

PU

Reactive power values for endpoints (Q1). Typical Value = -0.31.

q10

1..1

PU

Reactive power values for endpoints (Q10).

q2

1..1

PU

Reactive power values for endpoints (Q2). Typical Value = -0.28.

q3

1..1

PU

Reactive power values for endpoints (Q3). Typical Value = -0.21.

q4

1..1

PU

Reactive power values for endpoints (Q4). Typical Value = 0.

q5

1..1

PU

Reactive power values for endpoints (Q5).

q6

1..1

PU

Reactive power values for endpoints (Q6).

q7

1..1

PU

Reactive power values for endpoints (Q7).

q8

1..1

PU

Reactive power values for endpoints (Q8).

q9

1..1

PU

Reactive power values for endpoints (Q9).

tu1

1..1

Seconds

UEL lead time constant (TU1). Typical Value = 0.

tu2

1..1

Seconds

UEL lag time constant (TU2). Typical Value = 0.

tu3

1..1

Seconds

UEL lead time constant (TU3). Typical Value = 0.

tu4

1..1

Seconds

UEL lag time constant (TU4). Typical Value = 0.

tul

1..1

Seconds

Time constant associated with optional integrator feedback input signal to UEL (TUL). Typical Value = 0.

tup

1..1

Seconds

Real power filter time constant (TUP). Typical Value = 5.

tuq

1..1

Seconds

Reactive power filter time constant (TUQ). Typical Value = 0.

tuv

1..1

Seconds

Voltage filter time constant (TUV). Typical Value = 5.

vuimax

1..1

PU

UEL integrator output maximum limit (VUIMAX). Typical Value = 0.25.

vuimin

1..1

PU

UEL integrator output minimum limit (VUIMIN). Typical Value = 0.

vulmax

1..1

PU

UEL output maximum limit (VULMAX). Typical Value = 0.25.

vulmin

1..1

PU

UEL output minimum limit (VULMIN). Typical Value = 0.

Inherited Members

Inheritance pass: ->UnderexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see UnderexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

UnderexcLimX1

UnderexcitationLimiterDynamics

Allis-Chalmers minimum excitation limiter.

Native Members

k

1..1

PU

Minimum excitation limit slope (K) (>0).

kf2

1..1

PU

Differential gain (Kf2).

km

1..1

PU

Minimum excitation limit gain (Km).

melmax

1..1

PU

Minimum excitation limit value (MELMAX).

tf2

1..1

Seconds

Differential time constant (Tf2) (>0).

tm

1..1

Seconds

Minimum excitation limit time constant (Tm).

Inherited Members

Inheritance pass: ->UnderexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see UnderexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

UnderexcLimX2

UnderexcitationLimiterDynamics

Westinghouse minimum excitation limiter.

Native Members

kf2

1..1

PU

Differential gain (Kf2).

km

1..1

PU

Minimum excitation limit gain (Km).

melmax

1..1

PU

Minimum excitation limit value (MELMAX).

qo

1..1

PU

Excitation center setting (Qo).

r

1..1

PU

Excitation radius (R).

tf2

1..1

Seconds

Differential time constant (Tf2) (>0).

tm

1..1

Seconds

Minimum excitation limit time constant (Tm).

Inherited Members

Inheritance pass: ->UnderexcitationLimiterDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see UnderexcitationLimiterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

VAdjIEEE

VoltageAdjusterDynamics

The class represents IEEE Voltage Adjuster which is used to represent the voltage adjuster in either a power factor or var control system.

Reference: IEEE Standard 421.5-2005 Section 11.1.

Native Members

adjslew

1..1

Simple_Float

Rate at which output of adjuster changes (ADJ_SLEW). Unit = sec./PU. Typical Value = 300.

taoff

1..1

Seconds

Time that adjuster pulses are off (TAOFF). Typical Value = 0.5.

taon

1..1

Seconds

Time that adjuster pulses are on (TAON). Typical Value = 0.1.

vadjf

1..1

Simple_Float

Set high to provide a continuous raise or lower (VADJF).

vadjmax

1..1

PU

Maximum output of the adjuster (VADJMAX). Typical Value = 1.1.

vadjmin

1..1

PU

Minimum output of the adjuster (VADJMIN). Typical Value = 0.9.

Inherited Members

Inheritance pass: ->VoltageAdjusterDynamics->DynamicsFunctionBlock->IdentifiedObject

PFVArControllerType1Dynamics

1..1

PFVArControllerType1Dynamics

see VoltageAdjusterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

VCompIEEEType1

VoltageCompensatorDynamics

The class represents the terminal voltage transducer and the load compensator as defined in the IEEE Std 421.5-2005, Section 4. This model is common to all excitation system models described in the IEEE Standard.

Reference: IEEE Standard 421.5-2005 Section 4.

Native Members

rc

1..1

PU

Resistive component of compensation of a generator (Rc).

tr

1..1

Seconds

Time constant which is used for the combined voltage sensing and compensation signal (Tr).

xc

1..1

PU

Reactive component of compensation of a generator (Xc).

Inherited Members

Inheritance pass: ->VoltageCompensatorDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see VoltageCompensatorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

VCompIEEEType2

VoltageCompensatorDynamics

The class represents the terminal voltage transducer and the load compensator as defined in the IEEE Std 421.5-2005, Section 4. This model is designed to cover the following types of compensation:



Reference: IEEE Standard 421.5-2005, Section 4.

Native Members

tr

1..1

Seconds

Time constant which is used for the combined voltage sensing and compensation signal (Tr).

Inherited Members

Inheritance pass: ->VoltageCompensatorDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see VoltageCompensatorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

VoltageAdjusterUserDefined

UserDefinedModels

Voltage adjuster function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->VoltageAdjusterDynamics->DynamicsFunctionBlock->IdentifiedObject

PFVArControllerType1Dynamics

1..1

PFVArControllerType1Dynamics

see VoltageAdjusterDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

VoltageCompensatorUserDefined

UserDefinedModels

Voltage compensator function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->VoltageCompensatorDynamics->DynamicsFunctionBlock->IdentifiedObject

ExcitationSystemDynamics

1..1

ExcitationSystemDynamics

see VoltageCompensatorDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindAeroConstIEC

WindDynamics

The constant aerodynamic torque model assumes that the aerodynamic torque is constant.

Reference: IEC Standard 61400-27-1 Section 6.6.1.1.

Native Members

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindAeroLinearIEC

WindDynamics

The linearised aerodynamic model.

Reference: IEC Standard 614000-27-1 Section 6.6.1.2.

Native Members

dpomega

1..1

PU

Partial derivative of aerodynamic power with respect to changes in WTR speed (dpomega). It is case dependent parameter.

dptheta

1..1

PU

Partial derivative of aerodynamic power with respect to changes in pitch angle (dptheta). It is case dependent parameter.

omegazero

1..1

PU

Rotor speed if the wind turbine is not derated (omega0). It is case dependent parameter.

pavail

1..1

PU

Available aerodynamic power (pavail). It is case dependent parameter.

thetazero

1..1

AngleDegrees

Pitch angle if the wind turbine is not derated (theta0). It is case dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindContCurrLimIEC

WindDynamics

Current limitation model. The current limitation model combines the physical limits.

Reference: IEC Standard 61400-27-1 Section 6.6.5.7.

Native Members

imax

1..1

PU

Maximum continuous current at the wind turbine terminals (imax). It is type dependent parameter.

imaxdip

1..1

PU

Maximum current during voltage dip at the wind turbine terminals (imax,dip). It is project dependent parameter.

mdfslim

1..1

Boolean

Limitation of type 3 stator current (MDFSLim):
- false=0: total current limitation,
- true=1: stator current limitation).

It is type dependent parameter.

mqpri

1..1

Boolean

Prioritisation of q control during LVRT (Mqpri):
- true = 1: reactive power priority,
- false = 0: active power priority.

It is project dependent parameter.

tufilt

1..1

Seconds

Voltage measurement filter time constant (Tufilt). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindContPitchAngleIEC

WindDynamics

Pitch angle control model.

Reference: IEC Standard 61400-27-1 Section 6.6.5.8.

Native Members

dthetamax

1..1

Simple_Float

Maximum pitch positive ramp rate (dthetamax). It is type dependent parameter. Unit = degrees/sec.

dthetamin

1..1

Simple_Float

Maximum pitch negative ramp rate (dthetamin). It is type dependent parameter. Unit = degrees/sec.

kic

1..1

PU

Power PI controller integration gain (KIc). It is type dependent parameter.

kiomega

1..1

PU

Speed PI controller integration gain (KIomega). It is type dependent parameter.

kpc

1..1

PU

Power PI controller proportional gain (KPc). It is type dependent parameter.

kpomega

1..1

PU

Speed PI controller proportional gain (KPomega). It is type dependent parameter.

kpx

1..1

PU

Pitch cross coupling gain (KPX). It is type dependent parameter.

thetamax

1..1

AngleDegrees

Maximum pitch angle (thetamax). It is type dependent parameter.

thetamin

1..1

AngleDegrees

Minimum pitch angle (thetamin). It is type dependent parameter.

ttheta

1..1

Seconds

Pitch time constant (ttheta). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindContPType3IEC

WindDynamics

P control model Type 3.

Reference: IEC Standard 61400-27-1 Section 6.6.5.3.

Native Members

dpmax

1..1

PU

Maximum wind turbine power ramp rate (dpmax). It is project dependent parameter.

dtrisemaxlvrt

1..1

PU

Limitation of torque rise rate during LVRT for S1 (dTrisemaxLVRT). It is project dependent parameter.

kdtd

1..1

PU

Gain for active drive train damping (KDTD). It is type dependent parameter.

kip

1..1

PU

PI controller integration parameter (KIp). It is type dependent parameter.

kpp

1..1

PU

PI controller proportional gain (KPp). It is type dependent parameter.

mplvrt

1..1

Boolean

Enable LVRT power control mode (MpLVRT).
true = 1: voltage control
false = 0: reactive power control.

It is project dependent parameter.

omegaoffset

1..1

PU

Offset to reference value that limits controller action during rotor speed changes (omegaoffset). It is case dependent parameter.

pdtdmax

1..1

PU

Maximum active drive train damping power (pDTDmax). It is type dependent parameter.

rramp

1..1

PU

Ramp limitation of torque, required in some grid codes (Rramp). It is project dependent parameter.

tdvs

1..1

Seconds

Time delay after deep voltage sags (TDVS). It is project dependent parameter.

temin

1..1

PU

Minimum electrical generator torque (Temin). It is type dependent parameter.

tomegafilt

1..1

Seconds

Filter time constant for generator speed measurement (Tomegafilt). It is type dependent parameter.

tpfilt

1..1

Seconds

Filter time constant for power measurement (Tpfilt). It is type dependent parameter.

tpord

1..1

PU

Time constant in power order lag (Tpord). It is type dependent parameter.

tufilt

1..1

Seconds

Filter time constant for voltage measurement (Tufilt). It is type dependent parameter.

tuscale

1..1

PU

Voltage scaling factor of reset-torque (Tuscale). It is project dependent parameter.

twref

1..1

Seconds

Time constant in speed reference filter (Tomega,ref). It is type dependent parameter.

udvs

1..1

PU

Voltage limit for hold LVRT status after deep voltage sags (uDVS). It is project dependent parameter.

updip

1..1

PU

Voltage dip threshold for P-control (uPdip). Part of turbine control, often different (e.g 0.8) from converter thresholds. It is project dependent parameter.

wdtd

1..1

PU

Active drive train damping frequency (omegaDTD). It can be calculated from two mass model parameters. It is type dependent parameter.

zeta

1..1

Simple_Float

Coefficient for active drive train damping (zeta). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindContPType4aIEC

WindDynamics

P control model Type 4A.

Reference: IEC Standard 61400-27-1 Section 6.6.5.4.

Native Members

dpmax

1..1

PU

Maximum wind turbine power ramp rate (dpmax). It is project dependent parameter.

tpord

1..1

Seconds

Time constant in power order lag (Tpord). It is type dependent parameter.

tufilt

1..1

Seconds

Voltage measurement filter time constant (Tufilt). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindContPType4bIEC

WindDynamics

P control model Type 4B.

Reference: IEC Standard 61400-27-1 Section 6.6.5.5.

Native Members

dpmax

1..1

PU

Maximum wind turbine power ramp rate (dpmax). It is project dependent parameter.

tpaero

1..1

Seconds

Time constant in aerodynamic power response (Tpaero). It is type dependent parameter.

tpord

1..1

Seconds

Time constant in power order lag (Tpord). It is type dependent parameter.

tufilt

1..1

Seconds

Voltage measurement filter time constant (Tufilt). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindContQIEC

WindDynamics

Q control model.

Reference: IEC Standard 61400-27-1 Section 6.6.5.6.

Native Members

iqh1

1..1

PU

Maximum reactive current injection during dip (iqh1). It is type dependent parameter.

iqmax

1..1

PU

Maximum reactive current injection (iqmax). It is type dependent parameter.

iqmin

1..1

PU

Minimum reactive current injection (iqmin). It is type dependent parameter.

iqpost

1..1

PU

Post fault reactive current injection (iqpost). It is project dependent parameter.

kiq

1..1

PU

Reactive power PI controller integration gain (KI,q). It is type dependent parameter.

kiu

1..1

PU

Voltage PI controller integration gain (KI,u). It is type dependent parameter.

kpq

1..1

PU

Reactive power PI controller proportional gain (KP,q). It is type dependent parameter.

kpu

1..1

PU

Voltage PI controller proportional gain (KP,u). It is type dependent parameter.

kqv

1..1

PU

Voltage scaling factor for LVRT current (Kqv). It is project dependent parameter.

qmax

1..1

PU

Maximum reactive power (qmax). It is type dependent parameter.

qmin

1..1

PU

Minimum reactive power (qmin). It is type dependent parameter.

rdroop

1..1

PU

Resistive component of voltage drop impedance (rdroop). It is project dependent parameter.

tiq

1..1

Seconds

Time constant in reactive current lag (Tiq). It is type dependent parameter.

tpfilt

1..1

Seconds

Power measurement filter time constant (Tpfilt). It is type dependent parameter.

tpost

1..1

Seconds

Length of time period where post fault reactive power is injected (Tpost). It is project dependent parameter.

tqord

1..1

Seconds

Time constant in reactive power order lag (Tqord). It is type dependent parameter.

tufilt

1..1

Seconds

Voltage measurement filter time constant (Tufilt). It is type dependent parameter.

udb1

1..1

PU

Voltage dead band lower limit (udb1). It is type dependent parameter.

udb2

1..1

PU

Voltage dead band upper limit (udb2). It is type dependent parameter.

umax

1..1

PU

Maximum voltage in voltage PI controller integral term (umax). It is type dependent parameter.

umin

1..1

PU

Minimum voltage in voltage PI controller integral term (umin). It is type dependent parameter.

uqdip

1..1

PU

Voltage threshold for LVRT detection in q control (uqdip). It is type dependent parameter.

uref0

1..1

PU

User defined bias in voltage reference (uref0), used when MqG = MG,u. It is case dependent parameter.

windLVRTQcontrolModesType

1..1

WindLVRTQcontrolModesKind

Types of LVRT Q control modes (MqLVRT). It is project dependent parameter.

windQcontrolModesType

1..1

WindQcontrolModesKind

Types of general wind turbine Q control modes (MqG). It is project dependent parameter.

xdroop

1..1

PU

Inductive component of voltage drop impedance (xdroop). It is project dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindContRotorRIEC

WindDynamics

Rotor resistance control model.

Reference: IEC Standard 61400-27-1 Section 6.6.5.2.

Native Members

kirr

1..1

PU

Integral gain in rotor resistance PI controller (KIrr). It is type dependent parameter.

komegafilt

1..1

Simple_Float

Filter gain for generator speed measurement (Komegafilt). It is type dependent parameter.

kpfilt

1..1

Simple_Float

Filter gain for power measurement (Kpfilt). It is type dependent parameter.

kprr

1..1

PU

Proportional gain in rotor resistance PI controller (KPrr). It is type dependent parameter.

rmax

1..1

PU

Maximum rotor resistance (rmax). It is type dependent parameter.

rmin

1..1

PU

Minimum rotor resistance (rmin). It is type dependent parameter.

tomegafilt

1..1

Seconds

Filter time constant for generator speed measurement (Tomegafilt). It is type dependent parameter.

tpfilt

1..1

Seconds

Filter time constant for power measurement (Tpfilt). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindDynamicsLookupTable

WindDynamics

The class models a look up table for the purpose of wind standard models.

Native Members

input

1..1

Simple_Float

Input value (x) for the lookup table function.

lookupTableFunctionType

1..1

WindLookupTableFunctionKind

Type of the lookup table function.

output

1..1

Simple_Float

Output value (y) for the lookup table function.

sequence

1..1

Integer

Sequence numbers of the pairs of the input (x) and the output (y) of the lookup table function.

WindPlantFreqPcontrolIEC

[0..1]

WindPlantFreqPcontrolIEC

The wind dynamics lookup table associated with this frequency and active power wind plant model.

WindContRotorRIEC

[0..1]

WindContRotorRIEC

The rotor resistance control model with which this wind dynamics lookup table is associated.

WindContPType3IEC

[0..1]

WindContPType3IEC

The wind dynamics lookup table associated with this P control type 3 model.

WindContCurrLimIEC

[0..1]

WindContCurrLimIEC

The wind dynamics lookup table associated with this current control limitation model.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindGenTurbineType1IEC

WindDynamics

Wind turbine IEC Type 1.

Reference: IEC Standard 61400-27-1, section 6.5.2.

Native Members

WindAeroConstIEC

[1..1]

WindAeroConstIEC

Wind aerodynamic model associated with this wind turbine type 1 model.

Inherited Members

Inheritance pass: ->WindTurbineType1or2IEC->WindTurbineType1or2Dynamics->DynamicsFunctionBlock->IdentifiedObject

WindProtectionIEC

1..1

WindProtectionIEC

see WindTurbineType1or2IEC

WindMechIEC

1..1

WindMechIEC

see WindTurbineType1or2IEC

AsynchronousMachineDynamics

1..1

AsynchronousMachineDynamics

see WindTurbineType1or2Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType1or2Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindGenTurbineType2IEC

WindDynamics

Wind turbine IEC Type 2.

Reference: IEC Standard 61400-27-1, section 6.5.3.

Native Members

WindPitchContEmulIEC

[1..1]

WindPitchContEmulIEC

Pitch control emulator model associated with this wind turbine type 2 model.

WindContRotorRIEC

[1..1]

WindContRotorRIEC

Wind control rotor resistance model associated with wind turbine type 2 model.

Inherited Members

Inheritance pass: ->WindTurbineType1or2IEC->WindTurbineType1or2Dynamics->DynamicsFunctionBlock->IdentifiedObject

WindProtectionIEC

1..1

WindProtectionIEC

see WindTurbineType1or2IEC

WindMechIEC

1..1

WindMechIEC

see WindTurbineType1or2IEC

AsynchronousMachineDynamics

1..1

AsynchronousMachineDynamics

see WindTurbineType1or2Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType1or2Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindGenTurbineType3aIEC

WindDynamics

IEC Type 3A generator set model.

Reference: IEC Standard 61400-27-1 Section 6.6.3.2.

Native Members

kpc

1..1

Simple_Float

Current PI controller proportional gain (KPc). It is type dependent parameter.

tic

1..1

Seconds

Current PI controller integration time constant (TIc). It is type dependent parameter.

xs

1..1

PU

Electromagnetic transient reactance (xS). It is type dependent parameter.

Inherited Members

Inheritance pass: ->WindGenTurbineType3IEC->WindTurbineType3or4IEC->WindTurbineType3or4Dynamics->DynamicsFunctionBlock->IdentifiedObject

dipmax

1..1

PU

see WindGenTurbineType3IEC

diqmax

1..1

PU

see WindGenTurbineType3IEC

WindMechIEC

1..1

WindMechIEC

see WindGenTurbineType3IEC

WindContPitchAngleIEC

1..1

WindContPitchAngleIEC

see WindGenTurbineType3IEC

WindContPType3IEC

1..1

WindContPType3IEC

see WindGenTurbineType3IEC

WindAeroLinearIEC

1..1

WindAeroLinearIEC

see WindGenTurbineType3IEC

WindProtectionIEC

1..1

WindProtectionIEC

see WindTurbineType3or4IEC

WIndContQIEC

1..1

WindContQIEC

see WindTurbineType3or4IEC

WindContCurrLimIEC

1..1

WindContCurrLimIEC

see WindTurbineType3or4IEC

WindPlantDynamics

0..1

WindPlantDynamics

see WindTurbineType3or4Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType3or4Dynamics

EnergySource

1..1

EnergySource

see WindTurbineType3or4Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindGenTurbineType3bIEC

WindDynamics

IEC Type 3B generator set model.

Reference: IEC Standard 61400-27-1 Section 6.6.3.3.

Native Members

fducw

1..1

Simple_Float

Crowbar duration versus voltage variation look-up table (fduCW()). It is case dependent parameter.

mwtcwp

1..1

Boolean

Crowbar control mode (MWTcwp).


  • true = 1 in the model

  • false = 0 in the model.


The parameter is case dependent parameter.

tg

1..1

Seconds

Current generation Time constant (Tg). It is type dependent parameter.

two

1..1

Seconds

Time constant for crowbar washout filter (Two). It is case dependent parameter.

xs

1..1

PU

Electromagnetic transient reactance (xS). It is type dependent parameter.

Inherited Members

Inheritance pass: ->WindGenTurbineType3IEC->WindTurbineType3or4IEC->WindTurbineType3or4Dynamics->DynamicsFunctionBlock->IdentifiedObject

dipmax

1..1

PU

see WindGenTurbineType3IEC

diqmax

1..1

PU

see WindGenTurbineType3IEC

WindMechIEC

1..1

WindMechIEC

see WindGenTurbineType3IEC

WindContPitchAngleIEC

1..1

WindContPitchAngleIEC

see WindGenTurbineType3IEC

WindContPType3IEC

1..1

WindContPType3IEC

see WindGenTurbineType3IEC

WindAeroLinearIEC

1..1

WindAeroLinearIEC

see WindGenTurbineType3IEC

WindProtectionIEC

1..1

WindProtectionIEC

see WindTurbineType3or4IEC

WIndContQIEC

1..1

WindContQIEC

see WindTurbineType3or4IEC

WindContCurrLimIEC

1..1

WindContCurrLimIEC

see WindTurbineType3or4IEC

WindPlantDynamics

0..1

WindPlantDynamics

see WindTurbineType3or4Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType3or4Dynamics

EnergySource

1..1

EnergySource

see WindTurbineType3or4Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindMechIEC

WindDynamics

Two mass model.

Reference: IEC Standard 61400-27-1 Section 6.6.2.1.

Native Members

cdrt

1..1

PU

Drive train damping (cdrt). It is type dependent parameter.

hgen

1..1

Seconds

Inertia constant of generator (Hgen). It is type dependent parameter.

hwtr

1..1

Seconds

Inertia constant of wind turbine rotor (HWTR). It is type dependent parameter.

kdrt

1..1

PU

Drive train stiffness (kdrt). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindPitchContEmulIEC

WindDynamics

Pitch control emulator model.

Reference: IEC Standard 61400-27-1 Section 6.6.5.1.

Native Members

kdroop

1..1

Simple_Float

Power error gain (Kdroop). It is case dependent parameter.

kipce

1..1

Simple_Float

Pitch control emulator integral constant (KI,pce). It is type dependent parameter.

komegaaero

1..1

PU

Aerodynamic power change vs. omegaWTR change (Komegaaero). It is case dependent parameter.

kppce

1..1

Simple_Float

Pitch control emulator proportional constant (KP,pce). It is type dependent parameter.

omegaref

1..1

PU

Rotor speed in initial steady state (omegaref). It is case dependent parameter.

pimax

1..1

PU

Maximum steady state power (pimax). It is case dependent parameter.

pimin

1..1

PU

Minimum steady state power (pimin). It is case dependent parameter.

t1

1..1

Seconds

First time constant in pitch control lag (T1). It is type dependent parameter.

t2

1..1

Seconds

Second time constant in pitch control lag (T2). It is type dependent parameter.

tpe

1..1

Seconds

Time constant in generator air gap power lag (Tpe). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindPlantFreqPcontrolIEC

WindDynamics

Frequency and active power controller model.

Reference: IEC Standard 61400-27-1 Annex E.

Native Members

dprefmax

1..1

PU

Maximum ramp rate of pWTref request from the plant controller to the wind turbines (dprefmax). It is project dependent parameter.

dprefmin

1..1

PU

Minimum (negative) ramp rate of pWTref request from the plant controller to the wind turbines (dprefmin). It is project dependent parameter.

kiwpp

1..1

Simple_Float

Plant P controller integral gain (KIWPp). It is type dependent parameter.

kpwpp

1..1

Simple_Float

Plant P controller proportional gain (KPWPp). It is type dependent parameter.

prefmax

1..1

PU

Maximum pWTref request from the plant controller to the wind turbines (prefmax). It is type dependent parameter.

prefmin

1..1

PU

Minimum pWTref request from the plant controller to the wind turbines (prefmin). It is type dependent parameter.

tpft

1..1

Seconds

Lead time constant in reference value transfer function (Tpft). It is type dependent parameter.

tpfv

1..1

Seconds

Lag time constant in reference value transfer function (Tpfv). It is type dependent parameter.

twpffilt

1..1

Seconds

Filter time constant for frequency measurement (TWPffilt). It is type dependent parameter.

twppfilt

1..1

Seconds

Filter time constant for active power measurement (TWPpfilt). It is type dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindPlantIEC

WindDynamics

Simplified IEC type plant level model.

Reference: IEC 61400-27-1, AnnexE.

Native Members

WindPlantReactiveControlIEC

[1..1]

WindPlantReactiveControlIEC

Wind plant reactive control model associated with this wind plant.

WindPlantFreqPcontrolIEC

[1..1]

WindPlantFreqPcontrolIEC

Wind plant frequency and active power control model associated with this wind plant.

Inherited Members

Inheritance pass: ->WindPlantDynamics->DynamicsFunctionBlock->IdentifiedObject

RemoteInputSignal

0..1

RemoteInputSignal

see WindPlantDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindPlantReactiveControlIEC

WindDynamics

Simplified plant voltage and reactive power control model for use with type 3 and type 4 wind turbine models.

Reference: IEC Standard 61400-27-1 Annex E.

Native Members

kiwpx

1..1

Simple_Float

Plant Q controller integral gain (KIWPx). It is type dependent parameter.

kpwpx

1..1

Simple_Float

Plant Q controller proportional gain (KPWPx). It is type dependent parameter.

kwpqu

1..1

PU

Plant voltage control droop (KWPqu). It is project dependent parameter.

mwppf

1..1

Boolean

Power factor control modes selector (MWPpf). Used only if mwpu is set to false.
true = 1: power factor control
false = 0: reactive power control.
It is project dependent parameter.

mwpu

1..1

Boolean

Reactive power control modes selector (MWPu).
true = 1: voltage control
false = 0: reactive power control.
It is project dependent parameter.

twppfilt

1..1

Seconds

Filter time constant for active power measurement (TWPpfilt). It is type dependent parameter.

twpqfilt

1..1

Seconds

Filter time constant for reactive power measurement (TWPqfilt). It is type dependent parameter.

twpufilt

1..1

Seconds

Filter time constant for voltage measurement (TWPufilt). It is type dependent parameter.

txft

1..1

Seconds

Lead time constant in reference value transfer function (Txft). It is type dependent parameter.

txfv

1..1

Seconds

Lag time constant in reference value transfer function (Txfv). It is type dependent parameter.

uwpqdip

1..1

PU

Voltage threshold for LVRT detection in q control (uWPqdip). It is type dependent parameter.

xrefmax

1..1

PU

Maximum xWTref (qWTref or delta uWTref) request from the plant controller (xrefmax). It is project dependent parameter.

xrefmin

1..1

PU

Minimum xWTref (qWTref or deltauWTref) request from the plant controller (xrefmin). It is project dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindPlantUserDefined

UserDefinedModels

Wind plant function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->WindPlantDynamics->DynamicsFunctionBlock->IdentifiedObject

RemoteInputSignal

0..1

RemoteInputSignal

see WindPlantDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindProtectionIEC

WindDynamics

The grid protection model includes protection against over and under voltage, and against over and under frequency.

Reference: IEC Standard 614000-27-1 Section 6.6.6.

Native Members

fover

1..1

PU

Set of wind turbine over frequency protection levels (fover). It is project dependent parameter.

funder

1..1

PU

Set of wind turbine under frequency protection levels (funder). It is project dependent parameter.

tfover

1..1

Seconds

Set of corresponding wind turbine over frequency protection disconnection times (Tfover). It is project dependent parameter.

tfunder

1..1

Seconds

Set of corresponding wind turbine under frequency protection disconnection times (Tfunder). It is project dependent parameter.

tuover

1..1

Seconds

Set of corresponding wind turbine over voltage protection disconnection times (Tuover). It is project dependent parameter.

tuunder

1..1

Seconds

Set of corresponding wind turbine under voltage protection disconnection times (Tuunder). It is project dependent parameter.

uover

1..1

PU

Set of wind turbine over voltage protection levels (uover). It is project dependent parameter.

uunder

1..1

PU

Set of wind turbine under voltage protection levels (uunder). It is project dependent parameter.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindTurbineType4aIEC

WindDynamics

Wind turbine IEC Type 4A.

Reference: IEC Standard 61400-27-1, section 6.5.5.2.

Native Members

WindContPType4aIEC

[1..1]

WindContPType4aIEC

Wind control P type 4A model associated with this wind turbine type 4A model.

Inherited Members

Inheritance pass: ->WindGenType4IEC->WindTurbineType3or4IEC->WindTurbineType3or4Dynamics->DynamicsFunctionBlock->IdentifiedObject

dipmax

1..1

PU

see WindGenType4IEC

diqmax

1..1

PU

see WindGenType4IEC

diqmin

1..1

PU

see WindGenType4IEC

tg

1..1

Seconds

see WindGenType4IEC

WindProtectionIEC

1..1

WindProtectionIEC

see WindTurbineType3or4IEC

WIndContQIEC

1..1

WindContQIEC

see WindTurbineType3or4IEC

WindContCurrLimIEC

1..1

WindContCurrLimIEC

see WindTurbineType3or4IEC

WindPlantDynamics

0..1

WindPlantDynamics

see WindTurbineType3or4Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType3or4Dynamics

EnergySource

1..1

EnergySource

see WindTurbineType3or4Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindTurbineType4bIEC

WindDynamics

Wind turbine IEC Type 4A.

Reference: IEC Standard 61400-27-1, section 6.5.5.3.

Native Members

WindMechIEC

[1..1]

WindMechIEC

Wind mechanical model associated with this wind turbine Type 4B model.

WindContPType4bIEC

[1..1]

WindContPType4bIEC

Wind control P type 4B model associated with this wind turbine type 4B model.

Inherited Members

Inheritance pass: ->WindGenType4IEC->WindTurbineType3or4IEC->WindTurbineType3or4Dynamics->DynamicsFunctionBlock->IdentifiedObject

dipmax

1..1

PU

see WindGenType4IEC

diqmax

1..1

PU

see WindGenType4IEC

diqmin

1..1

PU

see WindGenType4IEC

tg

1..1

Seconds

see WindGenType4IEC

WindProtectionIEC

1..1

WindProtectionIEC

see WindTurbineType3or4IEC

WIndContQIEC

1..1

WindContQIEC

see WindTurbineType3or4IEC

WindContCurrLimIEC

1..1

WindContCurrLimIEC

see WindTurbineType3or4IEC

WindPlantDynamics

0..1

WindPlantDynamics

see WindTurbineType3or4Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType3or4Dynamics

EnergySource

1..1

EnergySource

see WindTurbineType3or4Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindType1or2UserDefined

UserDefinedModels

Wind Type 1 or Type 2 function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->WindTurbineType1or2Dynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

1..1

AsynchronousMachineDynamics

see WindTurbineType1or2Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType1or2Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindType3or4UserDefined

UserDefinedModels

Wind Type 3 or Type 4 function block whose dynamic behaviour is described by a user-defined model.

Native Members

proprietary

1..1

Boolean

Behaviour is based on proprietary model as opposed to detailed model.
true = user-defined model is proprietary with behaviour mutually understood by sending and receiving applications and parameters passed as general attributes
false = user-defined model is explicitly defined in terms of control blocks and their input and output signals.

Inherited Members

Inheritance pass: ->WindTurbineType3or4Dynamics->DynamicsFunctionBlock->IdentifiedObject

WindPlantDynamics

0..1

WindPlantDynamics

see WindTurbineType3or4Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType3or4Dynamics

EnergySource

1..1

EnergySource

see WindTurbineType3or4Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

Abstract Classes

DynamicsVersion (Entsoe)

Version details.

Native Members

baseUML (Entsoe)

1..1

String

Base UML provided by CIM model manager.

baseURI (Entsoe)

1..1

String

Profile URI used in the Model Exchange header and defined in IEC standards. It uniquely identifies the Profile and its version. It is given for information only and to identify the closest IEC profile to which this CGMES profile is based on.

date (Entsoe)

1..1

Date

Profile creation date
Form is YYYY-MM-DD for example for January 5, 2009 it is 2009-01-05.

differenceModelURI (Entsoe)

1..1

String

Difference model URI defined by IEC 61970-552.

entsoeUML (Entsoe)

1..1

String

UML provided by ENTSO-E.

entsoeURI (Entsoe)

1..1

String

Profile URI defined by ENTSO-E and used in the Model Exchange header. It uniquely identifies the Profile and its version. The last two elements in the URI (http://entsoe.eu/CIM/Dynamics/yy/zzz) indicate major and minor versions where:
- yy - indicates a major version;
- zzz - indicates a minor version.

modelDescriptionURI (Entsoe)

1..1

String

Model Description URI defined by IEC 61970-552.

namespaceRDF (Entsoe)

1..1

String

RDF namespace.

namespaceUML (Entsoe)

1..1

String

CIM UML namespace.

shortName (Entsoe)

1..1

String

The short name of the profile used in profile documentation.

ACDCTerminal

Core

An electrical connection point (AC or DC) to a piece of conducting equipment. Terminals are connected at physical connection points called connectivity nodes.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

AsynchronousMachine

Wires

A rotating machine whose shaft rotates asynchronously with the electrical field. Also known as an induction machine with no external connection to the rotor windings, e.g squirrel-cage induction machine.

Native Members

Inherited Members

Inheritance pass: ->RotatingMachine->RegulatingCondEq->ConductingEquipment->Equipment->PowerSystemResource->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

AsynchronousMachineDynamics

AsynchronousMachineDynamics

Asynchronous machine whose behaviour is described by reference to a standard model expressed in either time constant reactance form or equivalent circuit form or by definition of a user-defined model.

Parameter Notes:


  1. Asynchronous machine parameters such as Xl, Xs etc. are actually used as inductances (L) in the model, but are commonly referred to as reactances since, at nominal frequency, the per unit values are the same. However, some references use the symbol L instead of X.

Native Members

AsynchronousMachine

[1..1]

AsynchronousMachine

Asynchronous machine to which this asynchronous machine dynamics model applies.

Inherited Members

Inheritance pass: ->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ConductingEquipment

Core

The parts of the AC power system that are designed to carry current or that are conductively connected through terminals.

Native Members

Inherited Members

Inheritance pass: ->Equipment->PowerSystemResource->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

DiscontinuousExcitationControlDynamics

DiscontinuousExcitationControlDynamics

Discontinuous excitation control function block whose behaviour is described by reference to a standard model or by definition of a user-defined model.

Native Members

ExcitationSystemDynamics

[1..1]

ExcitationSystemDynamics

Excitation system model with which this discontinuous excitation control model is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

DynamicsFunctionBlock

Abstract parent class for all Dynamics function blocks.

Native Members

enabled

1..1

Boolean

Function block used indicator.
true = use of function block is enabled
false = use of function block is disabled.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

EnergyConsumer

Wires

Generic user of energy - a point of consumption on the power system model.

Native Members

LoadDynamics

[0..1]

LoadDynamics

Load dynamics model used to describe dynamic behavior of this energy consumer.

Inherited Members

Inheritance pass: ->ConductingEquipment->Equipment->PowerSystemResource->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

EnergySource

Wires

A generic equivalent for an energy supplier on a transmission or distribution voltage level.

Native Members

Inherited Members

Inheritance pass: ->ConductingEquipment->Equipment->PowerSystemResource->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

Equipment

Core

The parts of a power system that are physical devices, electronic or mechanical.

Inherited Members

Inheritance pass: ->PowerSystemResource->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

ExcitationSystemDynamics

ExcitationSystemDynamics

Excitation system function block whose behavior is described by reference to a standard model or by definition of a user-defined model.

Native Members

SynchronousMachineDynamics

[1..1]

SynchronousMachineDynamics

Synchronous machine model with which this excitation system model is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

IdentifiedObject

Core

This is a root class to provide common identification for all classes needing identification and naming attributes.

-IdentifiedObject.name is 32 characters maximum. It shall be consistent with the name of the object used in companies, in daily operation (e. g. in SCADA systems), in planning processes or in asset related systems and should allow inter-communicating of TSO, using general names.
IdentifiedObject.description is 256 characters maximum

Native Members

description

0..1

String

The description is a free human readable text describing or naming the object. It may be non unique and may not correlate to a naming hierarchy.

mRID

0..1

String

Master resource identifier issued by a model authority. The mRID must semantically be a UUID as specified in RFC 4122. The mRID is globally unique.
For CIMXML data files in RDF syntax, the mRID is mapped to rdf:ID or rdf:about attributes that identify CIM object elements.

name

0..1

String

The name is any free human readable and possibly non unique text naming the object.

LoadDynamics

LoadDynamics

Load whose behaviour is described by reference to a standard model or by definition of a user-defined model.

A standard feature of dynamic load behaviour modelling is the ability to associate the same behaviour to multiple energy consumers by means of a single aggregate load definition. Aggregate loads are used to represent all or part of the real and reactive load from one or more loads in the static (power flow) data. This load is usually the aggregation of many individual load devices and the load model is approximate representation of the aggregate response of the load devices to system disturbances. The load model is always applied to individual bus loads (energy consumers) but a single set of load model parameters can used for all loads in the grouping.

Native Members

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

MechanicalLoadDynamics

MechanicalLoadDynamics

Mechanical load function block whose behavior is described by reference to a standard model or by definition of a user-defined model.

Native Members

AsynchronousMachineDynamics

[0..1]

AsynchronousMachineDynamics

Asynchronous machine model with which this mechanical load model is associated.

SynchronousMachineDynamics

[0..1]

SynchronousMachineDynamics

Synchronous machine model with which this mechanical load model is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

OverexcitationLimiterDynamics

OverexcitationLimiterDynamics

OOverexcitation limiter function block whose behaviour is described by reference to a standard model or by definition of a user-defined model.

Native Members

ExcitationSystemDynamics

[1..1]

ExcitationSystemDynamics

Excitation system model with which this overexcitation limiter model is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArControllerType1Dynamics

PFVArControllerType1Dynamics

Power Factor or VAr controller Type I function block whose behaviour is described by reference to a standard model or by definition of a user-defined model.

Native Members

ExcitationSystemDynamics

[1..1]

ExcitationSystemDynamics

Excitation system model with which this Power Factor or VAr controller Type I model is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PFVArControllerType2Dynamics

PFVArControllerType2Dynamics

Power Factor or VAr controller Type II function block whose behaviour is described by reference to a standard model or by definition of a user-defined model.

Native Members

ExcitationSystemDynamics

[1..1]

ExcitationSystemDynamics

Excitation system model with which this Power Factor or VAr controller Type II is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PowerSystemResource

Core

A power system resource can be an item of equipment such as a switch, an equipment container containing many individual items of equipment such as a substation, or an organisational entity such as sub-control area. Power system resources can have measurements associated.

Inherited Members

Inheritance pass: ->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

PowerSystemStabilizerDynamics

PowerSystemStabilizerDynamics

Power system stabilizer function block whose behaviour is described by reference to a standard model or by definition of a user-defined model.

Native Members

ExcitationSystemDynamics

[1..1]

ExcitationSystemDynamics

Excitation system model with which this power system stabilizer model is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

RegulatingCondEq

Wires

A type of conducting equipment that can regulate a quantity (i.e. voltage or flow) at a specific point in the network.

Inherited Members

Inheritance pass: ->ConductingEquipment->Equipment->PowerSystemResource->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

RotatingMachine

Wires

A rotating machine which may be used as a generator or motor.

Inherited Members

Inheritance pass: ->RegulatingCondEq->ConductingEquipment->Equipment->PowerSystemResource->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

RotatingMachineDynamics

Abstract parent class for all synchronous and asynchronous machine standard models.

Native Members

damping

0..1

Simple_Float

Damping torque coefficient (D). A proportionality constant that, when multiplied by the angular velocity of the rotor poles with respect to the magnetic field (frequency), results in the damping torque. This value is often zero when the sources of damping torques (generator damper windings, load damping effects, etc.) are modelled in detail. Typical Value = 0.

inertia

0..1

Seconds

Inertia constant of generator or motor and mechanical load (H) (>0). This is the specification for the stored energy in the rotating mass when operating at rated speed. For a generator, this includes the generator plus all other elements (turbine, exciter) on the same shaft and has units of MW*sec. For a motor, it includes the motor plus its mechanical load. Conventional units are per unit on the generator MVA base, usually expressed as MW*second/MVA or just second. This value is used in the accelerating power reference frame for operator training simulator solutions. Typical Value = 3.

saturationFactor

0..1

Simple_Float

Saturation factor at rated terminal voltage (S1) (> or =0). Not used by simplified model. Defined by defined by S(E1) in the SynchronousMachineSaturationParameters diagram. Typical Value = 0.02.

saturationFactor120

0..1

Simple_Float

Saturation factor at 120% of rated terminal voltage (S12) (> or =S1). Not used by the simplified model, defined by S(E2) in the SynchronousMachineSaturationParameters diagram. Typical Value = 0.12.

statorLeakageReactance

0..1

PU

Stator leakage reactance (Xl) (> or =0). Typical Value = 0.15.

statorResistance

0..1

PU

Stator (armature) resistance (Rs) (> or =0). Typical Value = 0.005.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

SynchronousMachine

Wires

An electromechanical device that operates with shaft rotating synchronously with the network. It is a single machine operating either as a generator or synchronous condenser or pump.

Native Members

Inherited Members

Inheritance pass: ->RotatingMachine->RegulatingCondEq->ConductingEquipment->Equipment->PowerSystemResource->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

SynchronousMachineDetailed

SynchronousMachineDynamics

All synchronous machine detailed types use a subset of the same data parameters and input/output variables.
The several variations differ in the following ways:


Note: It is not necessary for each simulation tool to have separate models for each of the model types. The same model can often be used for several types by alternative logic within the model. Also, differences in saturation representation may not result in significant model performance differences so model substitutions are often acceptable.

Native Members

efdBaseRatio

0..1

Simple_Float

Ratio of Efd bases of exciter and generator models. Typical Value = 1.

ifdBaseType

0..1

IfdBaseKind

Excitation base system mode. Typical Value = ifag.

ifdBaseValue

0..1

CurrentFlow

Ifd base current if .ifdBaseType = other.
Not needed if .ifdBaseType not = other.
Unit = A. Typical Value = 0.

saturationFactor120QAxis

0..1

Simple_Float

Q-axis saturation factor at 120% of rated terminal voltage (S12q) (>=S1q). Typical Value = 0.12.

saturationFactorQAxis

0..1

Simple_Float

Q-axis saturation factor at rated terminal voltage (S1q) (>= 0). Typical Value = 0.02.

Inherited Members

Inheritance pass: ->SynchronousMachineDynamics->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

SynchronousMachine

1..1

SynchronousMachine

see SynchronousMachineDynamics

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

SynchronousMachineDynamics

SynchronousMachineDynamics

Synchronous machine whose behaviour is described by reference to a standard model expressed in one of the following forms:



or by definition of a user-defined model.

Note: It is a common practice to represent small generators by a negative load rather than by a dynamic generator model when performing dynamics simulations. In this case a SynchronousMachine in the static model is not represented by anything in the dynamics model, instead it is treated as ordinary load.

Parameter Notes:

  1. Synchronous machine parameters such as Xl, Xd, Xp etc. are actually used as inductances (L) in the models, but are commonly referred to as reactances since, at nominal frequency, the per unit values are the same. However, some references use the symbol L instead of X.

Native Members

SynchronousMachine

[1..1]

SynchronousMachine

Synchronous machine to which synchronous machine dynamics model applies.

Inherited Members

Inheritance pass: ->RotatingMachineDynamics->DynamicsFunctionBlock->IdentifiedObject

damping

0..1

Simple_Float

see RotatingMachineDynamics

inertia

0..1

Seconds

see RotatingMachineDynamics

saturationFactor

0..1

Simple_Float

see RotatingMachineDynamics

saturationFactor120

0..1

Simple_Float

see RotatingMachineDynamics

statorLeakageReactance

0..1

PU

see RotatingMachineDynamics

statorResistance

0..1

PU

see RotatingMachineDynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

Terminal

Core

An AC electrical connection point to a piece of conducting equipment. Terminals are connected at physical connection points called connectivity nodes.

Native Members

ConductingEquipment

[1..1]

ConductingEquipment

The conducting equipment of the terminal. Conducting equipment have terminals that may be connected to other conducting equipment terminals via connectivity nodes or topological nodes.

Inherited Members

Inheritance pass: ->ACDCTerminal->IdentifiedObject

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

TurbineGovernorDynamics

TurbineGovernorDynamics

Turbine-governor function block whose behavior is described by reference to a standard model or by definition of a user-defined model.

Native Members

AsynchronousMachineDynamics

[0..1]

AsynchronousMachineDynamics

Asynchronous machine model with which this turbine-governor model is associated.

SynchronousMachineDynamics

[0..*]

SynchronousMachineDynamics

Turbine-governor model associated with this synchronous machine model.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

TurbineLoadControllerDynamics

TurbineLoadControllerDynamics

Turbine load controller function block whose behavior is described by reference to a standard model or by definition of a user-defined model.

Native Members

TurbineGovernorDynamics

[1..1]

TurbineGovernorDynamics

Turbine-governor controlled by this turbine load controller.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

UnderexcitationLimiterDynamics

UnderexcitationLimiterDynamics

Underexcitation limiter function block whose behaviour is described by reference to a standard model or by definition of a user-defined model.

Native Members

ExcitationSystemDynamics

[1..1]

ExcitationSystemDynamics

Excitation system model with which this underexcitation limiter model is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

VoltageAdjusterDynamics

VoltageAdjusterDynamics

Voltage adjuster function block whose behaviour is described by reference to a standard model or by definition of a user-defined model.

Native Members

PFVArControllerType1Dynamics

[1..1]

PFVArControllerType1Dynamics

Power Factor or VAr controller Type I model with which this voltage adjuster is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

VoltageCompensatorDynamics

VoltageCompensatorDynamics

Voltage compensator function block whose behaviour is described by reference to a standard model or by definition of a user-defined model.

Native Members

ExcitationSystemDynamics

[1..1]

ExcitationSystemDynamics

Excitation system model with which this voltage compensator is associated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindGenTurbineType3IEC

WindDynamics

Generator model for wind turbines of IEC type 3A and 3B.

Native Members

dipmax

1..1

PU

Maximum active current ramp rate (dipmax). It is project dependent parameter.

diqmax

1..1

PU

Maximum reactive current ramp rate (diqmax). It is project dependent parameter.

WindMechIEC

[1..1]

WindMechIEC

Wind mechanical model associated with this wind turbine Type 3 model.

WindContPitchAngleIEC

[1..1]

WindContPitchAngleIEC

Wind control pitch angle model associated with this wind turbine type 3.

WindContPType3IEC

[1..1]

WindContPType3IEC

Wind control P type 3 model associated with this wind turbine type 3 model.

WindAeroLinearIEC

[1..1]

WindAeroLinearIEC

Wind aerodynamic model associated with this wind generator type 3 model.

Inherited Members

Inheritance pass: ->WindTurbineType3or4IEC->WindTurbineType3or4Dynamics->DynamicsFunctionBlock->IdentifiedObject

WindProtectionIEC

1..1

WindProtectionIEC

see WindTurbineType3or4IEC

WIndContQIEC

1..1

WindContQIEC

see WindTurbineType3or4IEC

WindContCurrLimIEC

1..1

WindContCurrLimIEC

see WindTurbineType3or4IEC

WindPlantDynamics

0..1

WindPlantDynamics

see WindTurbineType3or4Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType3or4Dynamics

EnergySource

1..1

EnergySource

see WindTurbineType3or4Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindGenType4IEC

WindDynamics

IEC Type 4 generator set model.

Reference: IEC Standard 61400-27-1 Section 6.6.3.4.

Native Members

dipmax

1..1

PU

Maximum active current ramp rate (dipmax). It is project dependent parameter.

diqmax

1..1

PU

Maximum reactive current ramp rate (diqmax). It is project dependent parameter.

diqmin

1..1

PU

Minimum reactive current ramp rate (diqmin). It is case dependent parameter.

tg

1..1

Seconds

Time constant (Tg). It is type dependent parameter.

Inherited Members

Inheritance pass: ->WindTurbineType3or4IEC->WindTurbineType3or4Dynamics->DynamicsFunctionBlock->IdentifiedObject

WindProtectionIEC

1..1

WindProtectionIEC

see WindTurbineType3or4IEC

WIndContQIEC

1..1

WindContQIEC

see WindTurbineType3or4IEC

WindContCurrLimIEC

1..1

WindContCurrLimIEC

see WindTurbineType3or4IEC

WindPlantDynamics

0..1

WindPlantDynamics

see WindTurbineType3or4Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType3or4Dynamics

EnergySource

1..1

EnergySource

see WindTurbineType3or4Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindPlantDynamics

WindDynamics

Parent class supporting relationships to wind turbines Type 3 and 4 and wind plant IEC and user defined wind plants including their control models.

Native Members

RemoteInputSignal

[0..1]

RemoteInputSignal

The wind plant using the remote signal.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindTurbineType1or2Dynamics

WindDynamics

Parent class supporting relationships to wind turbines Type 1 and 2 and their control models.

Native Members

AsynchronousMachineDynamics

[1..1]

AsynchronousMachineDynamics

Asynchronous machine model with which this wind generator type 1 or 2 model is associated.

RemoteInputSignal

[0..1]

RemoteInputSignal

Remote input signal used by this wind generator Type 1 or Type 2 model.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindTurbineType1or2IEC

WindDynamics

Generator model for wind turbine of IEC Type 1 or Type 2 is a standard asynchronous generator model.

Reference: IEC Standard 614000-27-1 Section 6.6.3.1.

Native Members

WindProtectionIEC

[1..1]

WindProtectionIEC

Wind turbune protection model associated with this wind generator type 1 or 2 model.

WindMechIEC

[1..1]

WindMechIEC

Wind mechanical model associated with this wind generator type 1 or 2 model.

Inherited Members

Inheritance pass: ->WindTurbineType1or2Dynamics->DynamicsFunctionBlock->IdentifiedObject

AsynchronousMachineDynamics

1..1

AsynchronousMachineDynamics

see WindTurbineType1or2Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType1or2Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindTurbineType3or4Dynamics

WindDynamics

Parent class supporting relationships to wind turbines Type 3 and 4 and wind plant including their control models.

-The class WindGeneratorTupe3or4Dynamics is associated with EnergySource as these types use current source in the load flow representation.

Native Members

WindPlantDynamics

[0..1]

WindPlantDynamics

The wind plant with which the wind turbines type 3 or 4 are associated.

RemoteInputSignal

[0..1]

RemoteInputSignal

Wind turbine Type 3 or 4 models using this remote input signal.

EnergySource

[1..1]

EnergySource

Energy Source (current source) with which this wind Type 3 or 4 dynamics model is asoociated.

Inherited Members

Inheritance pass: ->DynamicsFunctionBlock->IdentifiedObject

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

WindTurbineType3or4IEC

WindDynamics

Parent class supporting relationships to IEC wind turbines Type 3 and 4 and wind plant including their control models.

Native Members

WindProtectionIEC

[1..1]

WindProtectionIEC

Wind turbune protection model associated with this wind generator type 3 or 4 model.

WIndContQIEC

[1..1]

WindContQIEC

Wind control Q model associated with this wind turbine type 3 or 4 model.

WindContCurrLimIEC

[1..1]

WindContCurrLimIEC

Wind control current limitation model associated with this wind turbine type 3 or 4 model.

Inherited Members

Inheritance pass: ->WindTurbineType3or4Dynamics->DynamicsFunctionBlock->IdentifiedObject

WindPlantDynamics

0..1

WindPlantDynamics

see WindTurbineType3or4Dynamics

RemoteInputSignal

0..1

RemoteInputSignal

see WindTurbineType3or4Dynamics

EnergySource

1..1

EnergySource

see WindTurbineType3or4Dynamics

enabled

1..1

Boolean

see DynamicsFunctionBlock

description

0..1

String

see IdentifiedObject

mRID

0..1

String

see IdentifiedObject

name

0..1

String

see IdentifiedObject

Enumerations

UnitSymbol

DomainProfile

The units defined for usage in the CIM.

VA

Apparent power in volt ampere.

W

Active power in watt.

VAr

Reactive power in volt ampere reactive.

VAh

Apparent energy in volt ampere hours.

Wh

Real energy in what hours.

VArh

Reactive energy in volt ampere reactive hours.

V

Voltage in volt.

ohm

Resistance in ohm.

A

Current in ampere.

F

Capacitance in farad.

H

Inductance in henry.

degC

Relative temperature in degrees Celsius. In the SI unit system the symbol is ºC. Electric charge is measured in coulomb that has the unit symbol C. To distinguish degree Celsius form coulomb the symbol used in the UML is degC. Reason for not using ºC is the special character º is difficult to manage in software.

s

Time in seconds.

min

Time in minutes.

h

Time in hours.

deg

Plane angle in degrees.

rad

Plane angle in radians.

J

Energy in joule.

N

Force in newton.

S

Conductance in siemens.

none

Dimension less quantity, e.g. count, per unit, etc.

Hz

Frequency in hertz.

g

Mass in gram.

Pa

Pressure in pascal (n/m2).

m

Length in meter.

m2

Area in square meters.

m3

Volume in cubic meters.

UnitMultiplier

DomainProfile

The unit multipliers defined for the CIM.

p

Pico 10**-12.

n

Nano 10**-9.

micro

Micro 10**-6.

m

Milli 10**-3.

c

Centi 10**-2.

d

Deci 10**-1.

k

Kilo 10**3.

M

Mega 10**6.

G

Giga 10**9.

T

Tera 10**12.

none

No multiplier or equivalently multiply by 1.

ExcIEEEST1AUELselectorKind

ExcitationSystemDynamics

Type of connection for the UEL input used in ExcIEEEST1A.

ignoreUELsignal

Ignore UEL signal.

inputHVgateVoltageOutput

UEL input HV gate with voltage regulator output.

inputHVgateErrorSignal

UEL input HV gate with error signal.

inputAddedToErrorSignal

UEL input added to error signal.

ExcST6BOELselectorKind

ExcitationSystemDynamics

Type of connection for the OEL input used for static excitation systems type 6B.

noOELinput

No OEL input is used.

beforeUEL

The connection is before UEL.

afterUEL

The connection is after UEL.

ExcST7BOELselectorKind

ExcitationSystemDynamics

Type of connection for the OEL input used for static excitation systems type 7B.

noOELinput

No OEL input is used.

addVref

The signal is added to Vref.

inputLVgate

The signal is connected in the input of the LV gate.

outputLVgate

The signal is connected in the output of the LV gate.

ExcST7BUELselectorKind

ExcitationSystemDynamics

Type of connection for the UEL input used for static excitation systems type 7B.

noUELinput

No UEL input is used.

addVref

The signal is added to Vref.

inputHVgate

The signal is connected in the input of the HV gate.

outputHVgate

The signal is connected in the output of the HV gate.

ExcREXSFeedbackSignalKind

ExcitationSystemDynamics

Type of rate feedback signals.

fieldVoltage

The voltage regulator output voltage is used. It is the same as exciter field voltage.

fieldCurrent

The exciter field current is used.

outputVoltage

The output voltage of the exciter is used.

DroopSignalFeedbackKind

TurbineGovernorDynamics

Governor droop signal feedback source.

electricalPower

Electrical power feedback (connection indicated as 1 in the block diagrams of models, e.g. GovCT1, GovCT2).

none

No droop signal feedback, is isochronous governor.

fuelValveStroke

Fuel valve stroke feedback (true stroke) (connection indicated as 2 in the block diagrams of model, e.g. GovCT1, GovCT2).

governorOutput

Governor output feedback (requested stroke) (connection indicated as 3 in the block diagrams of models, e.g. GovCT1, GovCT2).

FrancisGovernorControlKind

TurbineGovernorDynamics

Governor control flag for Francis hydro model.

mechanicHydrolicTachoAccelerator

Mechanic-hydraulic regulator with tacho-accelerometer (Cflag = 1).

mechanicHydraulicTransientFeedback

Mechanic-hydraulic regulator with transient feedback (Cflag=2).

electromechanicalElectrohydraulic

Electromechanical and electrohydraulic regulator (Cflag=3).

GenericNonLinearLoadModelKind

LoadDynamics

Type of generic non-linear load model.

exponentialRecovery

Exponential recovery model.

loadAdaptive

Load adaptive model.

StaticLoadModelKind

LoadDynamics

Type of static load model.

exponential

Exponential P and Q equations are used and the following attributes are required:
kp1, kp2, kp3, kpf, ep1, ep2, ep3
kq1, kq2, kq3, kqf, eq1, eq2, eq3.

zIP1

ZIP1 P and Q equations are used and the following attributes are required:
kp1, kp2, kp3, kpf
kq1, kq2, kq3, kqf.

zIP2

This model separates the frequency-dependent load (primarily motors) from other load. ZIP2 P and Q equations are used and the following attributes are required:
kp1, kp2, kp3, kq4, kpf
kq1, kq2, kq3, kq4, kqf.

constantZ

The load is represented as a constant impedance. ConstantZ P and Q equations are used and no attributes are required.

InputSignalKind

PowerSystemStabilizerDynamics

Input signal type. In Dynamics modelling, commonly represented by j parameter.

rotorSpeed

Input signal is rotor or shaft speed (angular frequency).

rotorAngularFrequencyDeviation

Input signal is rotor or shaft angular frequency deviation.

busFrequency

Input signal is bus voltage frequency. This could be a terminal frequency or remote frequency.

busFrequencyDeviation

Input signal is deviation of bus voltage frequency. This could be a terminal frequency deviation or remote frequency deviation.

generatorElectricalPower

Input signal is generator electrical power on rated S.

generatorAcceleratingPower

Input signal is generating accelerating power.

busVoltage

Input signal is bus voltage. This could be a terminal voltage or remote voltage.

busVoltageDerivative

Input signal is derivative of bus voltage. This could be a terminal voltage derivative or remote voltage derivative.

branchCurrent

Input signal is amplitude of remote branch current.

fieldCurrent

Input signal is generator field current.

RemoteSignalKind

StandardInterconnections

Type of input signal coming from remote bus.

remoteBusVoltageFrequency

Input is voltage frequency from remote terminal bus.

remoteBusVoltageFrequencyDeviation

Input is voltage frequency deviation from remote terminal bus.

remoteBusFrequency

Input is frequency from remote terminal bus.

remoteBusFrequencyDeviation

Input is frequency deviation from remote terminal bus.

remoteBusVoltageAmplitude

Input is voltage amplitude from remote terminal bus.

remoteBusVoltage

Input is voltage from remote terminal bus.

remoteBranchCurrentAmplitude

Input is branch current amplitude from remote terminal bus.

remoteBusVoltageAmplitudeDerivative

Input is branch current amplitude derivative from remote terminal bus.

remotePuBusVoltageDerivative

Input is PU voltage derivative from remote terminal bus.

IfdBaseKind

SynchronousMachineDynamics

Excitation base system mode.

ifag

Air gap line mode. ifdBaseValue is computed, not defined by the user, in this mode.

ifnl

No load system with saturation mode. ifdBaseValue is computed, not defined by the user, in this mode.

iffl

Full load system mode. ifdBaseValue is computed, not defined by the user, in this mode.

other

Free mode. ifdBaseValue is defined by the user in this mode.

SynchronousMachineModelKind

SynchronousMachineDynamics

Type of synchronous machine model used in Dynamic simulation applications.

subtransient

Subtransient synchronous machine model.

subtransientTypeF

WECC Type F variant of subtransient synchronous machine model.

subtransientTypeJ

WECC Type J variant of subtransient synchronous machine model.

subtransientSimplified

Simplified version of subtransient synchronous machine model where magnetic coupling between the direct and quadrature axes is ignored.

subtransientSimplifiedDirectAxis

Simplified version of a subtransient synchronous machine model with no damper circuit on d-axis.

RotorKind

SynchronousMachineDynamics

Type of rotor on physical machine.

roundRotor

Round rotor type of synchronous machine.

salientPole

Salient pole type of synchronous machine.

WindLVRTQcontrolModesKind

WindDynamics

LVRT Q control modes MqLVRT.

mode1

Voltage dependent reactive current injection (MLVRT,1).

mode2

Reactive current injection controlled as the pre-fault value plus an additional voltage dependent reactive current injection (MLVRT,2).

mode3

Reactive current injection controlled as the pre-fault value plus an additional voltage dependent reactive current injection during fault, and as the pre-fault value plus an additional constant reactive current injection post fault (MLVRT,3).

WindQcontrolModesKind

WindDynamics

General wind turbine Q control modes MqG.

voltage

Voltage control (MG,u).

reactivePower

Reactive power control (MG,q).

openLoopReactivePower

Open loop reactive power control (only used with closed loop at plant level) (MG,qol).

powerFactor

Power factor control (MG,pf).

WindLookupTableFunctionKind

WindDynamics

Function of the lookup table.

fpslip

Power versus slip lookup table (fpslip()). It is used for rotor resistance control model, IEC 61400-27-1, section 6.6.5.2.

fpomega

Power vs. speed lookup table (fpomega()). It is used for P control model type 3, IEC 61400-27-1, section 6.6.5.3.

ipvdl

Lookup table for voltage dependency of active current limits (ipVDL()). It is used for current limitation model, IEC 61400-27-1, section 6.6.5.7.

iqvdl

Lookup table for voltage dependency of reactive current limits (iqVDL()). It is used for current limitation model, IEC 61400-27-1, section 6.6.5.7.

fdpf

Power vs. frequency lookup table (fdpf()). It is used for wind power plant frequency and active power control model, IEC 61400-27-1, Annex E.

Compound types

Datatypes

PU

DomainProfile

Per Unit - a positive or negative value referred to a defined base. Values typically range from -10 to +10.

-Value type is IEEE 754 simple precision floating point

value

0..1

Float

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

Seconds

DomainProfile

Time, in seconds.

-Value type is IEEE 754 simple precision floating point

value

0..1

Float

Time, in seconds

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

Simple_Float

DomainProfile

A floating point number. The range is unspecified and not limited.

-In ENTSO-E profile, Simple_Float range is the IEEE754 simple precision floating point one. It correspond to xs:float datatype

value

1..1

Float

AngleDegrees

DomainProfile

Measurement of angle in degrees.

-Value type is IEEE 754 simple precision floating point

value

0..1

Float

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

ApparentPower

DomainProfile

Product of the RMS value of the voltage and the RMS value of the current.

-Value type is IEEE 754 simple precision floating point

value

0..1

Float

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

ActivePower

DomainProfile

Product of RMS value of the voltage and the RMS value of the in-phase component of the current.

-Value type is IEEE 754 simple precision floating point

value

0..1

Float

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

Frequency

DomainProfile

Cycles per second.

-Value type is IEEE 754 simple precision floating point

value

0..1

Float

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

Temperature

DomainProfile

Value of temperature in degrees Celsius.

-Value type is IEEE 754 simple precision floating point

multiplier

0..1

UnitMultiplier

unit

0..1

UnitSymbol

value

0..1

Float

Area

DomainProfile

Area.

value

0..1

Float

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

Length

DomainProfile

Unit of length. Never negative.

-Value type is IEEE 754 simple precision floating point

value

0..1

Float

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

VolumeFlowRate

DomainProfile

Volume per time.

denominatorMultiplier

0..1

UnitMultiplier

denominatorUnit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier

unit

0..1

UnitSymbol

value

0..1

Float

CurrentFlow

DomainProfile

Electrical current with sign convention: positive flow is out of the conducting equipment into the connectivity node. Can be both AC and DC.

-Value type is IEEE 754 simple precision floating point

value

0..1

Float

unit

0..1

UnitSymbol

multiplier

0..1

UnitMultiplier